Knowledge Agora



Similar Articles

Title Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world
ID_Doc 77225
Authors Seck, GS; Hache, E; Barnet, C
Title Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world
Year 2022
Published
Abstract Within the context of the energy transition, decarbonization of the transport sector is the cornerstone of many public policies. As a key component in the cathodes of lithium-ion batteries and nickel metal hydride batteries used in electric or hybrid vehicles, cobalt is expected to face a dynamic demand in the coming decades. Numerous questions are arising regarding the criticality risks of this key metal of the energy transition. In order to assess the availability of cobalt until 2050, we rely on our linear programming world energy-transport model, TIAM-IFPEN. Two climate scenarios were considered (2 degrees C and 4 degrees C), each with two different mobility scenarios (Business-as-Usual mobility and Sustainable mobility) and for each mobility scenario, three lithium-ion battery chemistry mix trajectories were considered (high, central and low cobalt content) by 2050. Results show that in the most stringent scenario 83,2% of cobalt resources identified in 2013 would be extracted from the ground by 2050 to satisfy global consumption. Two Thirds of world production is from Africa while China consumes 1/3 of the total demand by 2050. We identify several ways to meet the increasing demand for cobalt resources. Public policies must therefore focus on 3 complementary axes: promoting the development of sustainable mobility; prioritizing low cobalt content batteries in electric vehicles; and concentrating efforts on the implementation and the deployment of a system for recovering, sorting and recycling waste.
PDF http://manuscript.elsevier.com/S0301420721005237/pdf/S0301420721005237.pdf

Similar Articles

ID Score Article
69185 van der Meide, M; Harpprecht, C; Northey, S; Yang, YX; Steubing, B Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt(2022)Journal Of Industrial Ecology, 26, 5
28142 Baars, J; Domenech, T; Bleischwitz, R; Melin, HE; Heidrich, O Circular economy strategies for electric vehicle batteries reduce reliance on raw materials(2021)Nature Sustainability, 4.0, 1
6735 Neidhardt, M; Mas-Peiro, J; Schulz-Moenninghoff, M; Pou, JO; Gonzalez-Olmos, R; Kwade, A; Schmuelling, B Forecasting the Global Battery Material Flow: Analyzing the Break-Even Points at Which Secondary Battery Raw Materials Can Substitute Primary Materials in the Battery Production(2022)Applied Sciences-Basel, 12, 9
16541 Golroudbary, SR; Farfan, J; Lohrmann, A; Kraslawski, A Environmental benefits of circular economy approach to use of cobalt(2022)
10515 Dunn, J; Slattery, M; Kendall, A; Ambrose, H; Shen, SH Circularity of Lithium-Ion Battery Materials in Electric Vehicles(2021)Environmental Science & Technology, 55, 8
13474 Schuster, V; Ciacci, L; Passarini, F Mining the in-use stock of energy-transition materials for closed-loop e-mobility(2023)
27445 Mayyas, A; Moawad, K; Chadly, A; Alhseinat, E Can circular economy and cathode chemistry evolution stabilize the supply chain of Li-ion batteries?(2023)
20529 Watari, T; Nansai, K; Nakajima, K; McLellan, BC; Dominish, E; Giurco, D Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles(2019)Environmental Science & Technology, 53, 20
3795 Hu, ZM; Yu, BY; Daigo, I; Tan, JX; Sun, FH; Zhang, ST Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target(2024)
22785 Collis, GE; Dai, Q; Loh, JSC; Lipson, A; Gaines, L; Zhao, YY; Spangenberger, J Closing the Loop on LIB Waste: A Comparison of the Current Challenges and Opportunities for the U.S. and Australia towards a Sustainable Energy Future(2023)Recycling, 8.0, 5
Scroll