Knowledge Agora



Similar Articles

Title Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review
ID_Doc 7724
Authors Chen, WH; Nizetic, S; Sirohi, R; Huang, ZH; Luque, R; Papadopoulos, AM; Sakthivel, R; Nguyen, XP; Hoang, AT
Title Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review
Year 2022
Published
Abstract In recent years, lignocellulosic biomass has emerged as one of the most versatile energy sources among the research community for the production of biofuels and value-added chemicals. However, biomass pretreatment plays an important role in reducing the recalcitrant properties of lignocellulose, leading to superior quality of target products in bioenergy production. Among existing pretreatment techniques, liquid hot water (LHW) pretreatment has several outstanding advantages compared to others including minimum formation of monomeric sugars, significant removal of hemicellulose, and positive environmental impacts; however, several constraints of LHW pretreatment should be clarified. This contribution aims to provide a comprehensive analysis of reaction mechanism, reactor characteristics, influencing factors, techno-economic aspects, challenges, and prospects for LHW-based biomass pretreatment. Generally, LHW pretreatment could be widely employed in bioenergy processing from biomass, but circular economy-based advanced pretreatment techniques should be further studied in the future to achieve maximum efficiency, and minimum cost and drawbacks.
PDF

Similar Articles

ID Score Article
9105 Guragain, YN; Vadlani, PV Renewable Biomass Utilization: A Way Forward to Establish Sustainable Chemical and Processing Industries(2021)Clean Technologies, 3.0, 1
8111 Ruiz, HA; Sganzerla, WG; Larnaudie, V; Veersma, RJ; van Erven, G; Shiva; Ríos-González, LJ; Rodríguez-Jasso, RM; Rosero-Chasoy, G; Ferrari, MD; Kabel, MA; Forster-Carneiro, T; Lareo, C Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept(2023)
9951 Zhang, B; Biswal, BK; Zhang, JJ; Balasubramanian, R Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives(2023)Chemical Reviews, 123.0, 11
27734 Ali, SS; Al-Tohamy, R; Elsamahy, T; Sun, JZ Harnessing recalcitrant lignocellulosic biomass for enhanced biohydrogen production: Recent advances, challenges, and future perspective(2024)
21761 Mujtaba, M; Fraceto, LF; Fazeli, M; Mukherjee, S; Savassa, SM; de Medeiros, GA; Pereira, ADS; Mancini, SD; Lipponen, J; Vilaplana, F Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics(2023)
2805 Eqbalpour, M; Andooz, A; Kowsari, E; Ramakrishna, S; Cheshmeh, ZA; Chinnappan, A A comprehensive review on how ionic liquids enhance the pyrolysis of cellulose, lignin, and lignocellulose toward a circular economy(2023)Wiley Interdisciplinary Reviews-Energy And Environment, 12, 4
7327 Hu, NW; Liu, XB; Wei, SG; Yao, JW; Wang, WX; Liu, B; Tang, TM; Jiang, JA; Wang, L Current status and future prospects of pretreatment for tobacco stalk lignocellulose(2024)
9021 Srivastava, N; Singh, R; Singh, P; Ahmad, I; Singh, RP; Rai, AK; Asiri, M; Gupta, VK Recent advances on lignocellulosic bioresources and their valorization in biofuels production: Challenges and viability assessment(2023)
20436 Dessie, W; Luo, XF; He, FL; Liao, YH; Qin, ZD Lignin valorization: A crucial step towards full utilization of biomass, zero waste and circular bioeconomy(2023)
12484 Broda, M; Yelle, DJ; Serwanska, K Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions(2022)Molecules, 27.0, 24
Scroll