Knowledge Agora



Similar Articles

Title Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation
ID_Doc 7854
Authors Ma, R; Li, J; Tyagi, R; Zhang, XL
Title Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation
Year 2024
Published
Abstract The currently used plastics are non-biodegradable, and cause greenhouse gases (GHGs) emission as they are petroleum-based. Polyhydroxyalkanoates (PHAs) are biopolymers with excellent biodegradability and biocompatibility, which can be used to replace petroleum-based plastics. A variety of microorganisms have been found to synthesize PHAs by using typical GHGs: carbon dioxide and methane as carbon sources. Converting carbon dioxide (CO2) and methane (CH4) to PHAs is an attractive option for carbon capture and biodegradable plastic production. In this review, the microorganisms capable of using CO2 and CH4 to produce PHAs were summarized. The metabolic mechanism, PHAs production process, and the factors influencing the production process are illustrated. The currently used optimization techniques to improve the yield of PHAs are discussed. The challenges and future prospects for developing economically viable PHAs production using GHGs as carbon source are identified. This work provides an insight for achieving carbon sequestration and bioplastics based circular economy.
PDF

Similar Articles

ID Score Article
20576 Zhou, W; Bergsma, S; Colpa, DI; Euverink, GJW; Krooneman, J Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy(2023)
8026 Abbas, MI; Amelia, TSM; Bhubalan, K; Vigneswari, S; Ramakrishna, S; Amirul, AAA Bioprospecting waste for polyhydroxyalkanoates production: embracing low carbon bioeconomy(2024)
12294 Mukherjee, A; Koller, M Microbial PolyHydroxyAlkanoate (PHA) Biopolymers-Intrinsically Natural(2023)Bioengineering-Basel, 10.0, 7
9197 González-Rojo, S; Paniagua-García, AI; Díez-Antolínez, R Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production(2024)Microorganisms, 12.0, 8
21364 Rajvanshi, J; Sogani, M; Kumar, A; Arora, S; Syed, Z; Sonu, K; Sen Gupta, N; Kalra, A Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy(2023)
23701 Adeleye, AT; Odoh, CK; Enudi, OC; Banjoko, OO; Osiboye, OO; Odediran, ET; Louis, H Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass(2020)
6293 Mannina, G; Presti, D; Montiel-Jarillo, G; Carrera, J; Suárez-Ojeda, ME Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review(2020)
10842 Vickram, AS; Saravanan, A; Kumar, PS; Thamarai, P; Yasodha, S; Jamuna, G; Rangasamy, G An integrated approach to the sustainable development and production of biofuel from biopolymers and algal biomass derived from wastewater(2023)
13152 Ahuja, V; Singh, PK; Mahata, C; Jeon, JM; Kumar, G; Yang, YH; Bhatia, SK A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater(2024)Microbial Cell Factories, 23, 1
987 Gradíssimo, DG; Xavier, LP; Santos, AV Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy(2020)Molecules, 25, 18
Scroll