Knowledge Agora



Similar Articles

Title Optimization and characterization of reinforced biodegradable cellulose-based aerogels via polylactic acid/polyhydroxybutyrate coating
ID_Doc 7855
Authors Reyes, A; Calleja, A; Gil-Guillén, I; Benito-González, I
Title Optimization and characterization of reinforced biodegradable cellulose-based aerogels via polylactic acid/polyhydroxybutyrate coating
Year 2023
Published
Abstract Vine shoots (VS) and waste eucalyptus paperboard (EP) have been used as cellulose sources (in the form of cellulose nanocrystals -CNCs- and cellulosic fibers respectively) for developing cellulose-based aerogels. Two different parameters including cellulose concentration (0.5 % and 2 % w/v) and freezing temperatures (20 degrees C and -80 degrees C) were tested to evaluate differences in the porosity of the aerogels via Brunauer-Emmett-Teller (BET) and thermal conductivity analyses. In addition, a supplementary coating was applied to the raw aerogels by means of dipping the materials in either polylactic acid (PLA) or polyhydroxybutyrate (PHB) solutions (1 % w/v). Their microstructure was observed via SEM and the reinforcing capacity provided by the coating was measured by means of mechanical compressive tests (similar to 10-fold improvement) and water resistance (contact angle >100 degrees). Finally, aerogels' biodegradability was also confirmed according to the standard ISO 20200 thus providing a sustainable and high-performance alternative to conventional materials also following circular economy principles.
PDF

Similar Articles

ID Score Article
23913 Morcillo-Martín, R; Espinosa, E; Rabasco-Vilchez, L; Sanchez, LM; de Haro, J; Rodríguez, A Cellulose Nanofiber-Based Aerogels from Wheat Straw: Influence of Surface Load and Lignin Content on Their Properties and Dye Removal Capacity(2022)Biomolecules, 12, 2
5591 Kostic, M; Imani, M; Ivanovska, A; Radojevic, V; Dimic-Misic, K; Barac, N; Stojanovic, D; Janackovic, D; Uskokovic, P; Barcelo, E; Gane, P Extending waste paper, cellulose and filler use beyond recycling by entering the circular economy creating cellulose-CaCO3 composites reconstituted from ionic liquid(2022)Cellulose, 29, 9
10601 Singh, AK; Itkor, P; Lee, YS State-of-the-Art Insights and Potential Applications of Cellulose-Based Hydrogels in Food Packaging: Advances towards Sustainable Trends(2023)Gels, 9, 6
8092 Basak, M; Gandy, E; Lucia, LA; Pal, L Polymer upcycling of municipal solid cellulosic waste by tandem mechanical pretreatment and maleic acid hydrolysis(2023)Cell Reports Physical Science, 4, 12
9650 Sousa, FJPM; Jesus, CF; Góis, JR; Pereira, NAM; Antunes, FE Microcrystalline cellulose and by-products from the pulp and paper industry as reinforcing fibres for polybutylene succinate-based composites: A comparative study(2024)Journal Of Reinforced Plastics And Composites, 43.0, 15-16
9448 Tarrés, Q; Oliver-Ortega, H; Ferreira, PJ; Pèlach, MA; Mutjé, P; Delgado-Aguilar, M Towards a new generation of functional fiber-based packaging: cellulose nanofibers for improved barrier, mechanical and surface properties(2018)Cellulose, 25.0, 1
23494 Aziz, T; Farid, A; Haq, F; Kiran, M; Ullah, A; Zhang, KC; Li, C; Ghazanfar, S; Sun, HY; Ullah, R; Ali, A; Muzammal, M; Shah, M; Akhtar, N; Selim, S; Hagagy, N; Samy, M; Al Jaouni, SK A Review on the Modification of Cellulose and Its Applications(2022)Polymers, 14, 15
8410 Turku, I; Rohumaa, A; Tirri, T; Pulkkinen, L Progress in Achieving Fire-Retarding Cellulose-Derived Nano/Micromaterial-Based Thin Films/Coatings and Aerogels: A Review(2024)Fire-Switzerland, 7.0, 1
22418 Sharma, N; Allardyce, BJ; Rajkhowa, R; Agrawal, R Biodegradable Cellulose and Cellulose Nanofibres-Based Coating Materials as a Postharvest Preservative for Horticultural Products(2024)Journal Of Polymers And The Environment, 32.0, 3
13840 Espíndola, SP; Pronk, M; Zlopasa, J; Picken, SJ; van Loosdrecht, MCM Nanocellulose recovery from domestic wastewater(2021)
Scroll