Knowledge Agora



Similar Articles

Title Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes
ID_Doc 8005
Authors Castro, L; Blazquez, ML; Gonzalez, F; Munoz, JA
Title Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes
Year 2021
Published Molecules, 26, 20
Abstract Biohydrometallurgy recovers metals through microbially mediated processes and has been traditionally applied for the extraction of base metals from low-grade sulfidic ores. New investigations explore its potential for other types of critical resources, such as rare earth elements. In recent times, the interest in rare earth elements (REEs) is growing due to of their applications in novel technologies and green economy. The use of biohydrometallurgy for extracting resources from waste streams is also gaining attention to support innovative mining and promote a circular economy. The increase in wastes containing REEs turns them into a valuable alternative source. Most REE ores and industrial residues do not contain sulfides, and bioleaching processes use autotrophic or heterotrophic microorganisms to generate acids that dissolve the metals. This review gathers information towards the recycling of REE-bearing wastes (fluorescent lamp powder, spent cracking catalysts, e-wastes, etc.) using a more sustainable and environmentally friendly technology that reduces the impact on the environment.

PDF https://www.mdpi.com/1420-3049/26/20/6200/pdf?version=1634205199

Similar Articles

ID Score Article
63864 Erust, C; Karacahan, MK; Uysal, T Hydrometallurgical Roadmaps and Future Strategies for Recovery of Rare Earth Elements(2023)Mineral Processing And Extractive Metallurgy Review, 44, 6
30010 Abbadi, A; Mucsi, G A review on complex utilization of mine tailings: Recovery of rare earth elements and residue valorization(2024)Journal Of Environmental Chemical Engineering, 12.0, 3
20334 Kaksonen, AH; Deng, X; Bohu, T; Zea, L; Khaleque, HN; Gumulya, Y; Boxall, NJ; Morris, C; Cheng, KY Prospective directions for biohydrometallurgy(2020)
27978 Giese, EC E-waste mining and the transition toward a bio-based economy: The case of lamp phosphor powder(2022)Mrs Energy & Sustainability, 9.0, 2
29154 Kara, IT; Kremser, K; Wagland, ST; Coulon, F Bioleaching metal-bearing wastes and by-products for resource recovery: a review(2023)Environmental Chemistry Letters, 21.0, 6
25489 Shahbaz, A A systematic review on leaching of rare earth metals from primary and secondary sources(2022)
29862 Xu, TT; Zheng, XD; Ji, B; Xu, ZH; Bao, SF; Zhang, X; Li, GM; Mei, JF; Li, ZY Green recovery of rare earth elements under sustainability and low carbon: A review of current challenges and opportunities(2024)
7747 Gomes, HI; Funari, V; Ferrari, R Bioleaching for resource recovery from low-grade wastes like fly and bottom ashes from municipal incinerators: A SWOT analysis(2020)
24462 Dutta, D; Rautela, R; Gujjala, LKS; Kundu, D; Sharma, P; Tembhare, M; Kumar, S A review on recovery processes of metals from E-waste: A green perspective(2023)
28586 Al Momani, DE; Al Ansari, Z; Ouda, M; Abujayyab, M; Kareem, M; Agbaje, T; Sizirici, B Occurrence, treatment, and potential recovery of rare earth elements from wastewater in the context of a circular economy(2023)
Scroll