Knowledge Agora



Similar Articles

Title Recovery of Metals from Mine Wastes: The Effect of Biochar-Fe Composites in the Immobilization of Arsenic
ID_Doc 8017
Authors Alvarez, ML; Gascó, G; Rodíguez-Pacheco, R; Paz-Ferreiro, J; Méndez, A
Title Recovery of Metals from Mine Wastes: The Effect of Biochar-Fe Composites in the Immobilization of Arsenic
Year 2022
Published Journal Of Sustainable Metallurgy, 8, 1
Abstract Mine wastes are a major environmental problem of main mines activities. However, in recent years, related to the circular economy strategy, some of these wastes have been considered as secondary source of raw materials. Generally, metal's content show low concentrations and their recovery made the development of cheap and sustainable technologies necessary. The main objective of the present research is to study the potential recovery of zinc from one mine waste (MW) originated in an old zinc/lead mine exploitation. Two biochar-Fe composites (BM-Fe and HM-Fe) were used as catalysts in the leaching of zinc and copper. Biochars were obtained by pyrolysis of pruning waste (BM-Fe) or hydrochar from pruning waste (HM-Fe), impregnated with 5 wt% ferric sulfate. The use of the two biochars did not improve the amount of zinc recovered, but was able to reduce, significantly, the arsenic leaching, promoting its immobilization in the final residue. [GRAPHICS] .
PDF

Similar Articles

ID Score Article
32819 Sharma, K; Kohansal, K; Azuara, AJ; Rosendahl, LA; Benedetti, V; Yu, DH; Pedersen, TH Green and facile recycling of bauxite residue to biochar-supported iron-based composite material for hydrothermal liquefaction of municipal solid waste(2023)
15376 Falagán, C; Dew, DW; Hudson-Edwards, KA Effect of nutrient concentration, dissolved salts, and mineralogy at high temperature column bioleaching of a pyrrhotite-pyrite secondary ore(2024)
21118 Viotti, P; Marzeddu, S; Antonucci, A; Decima, MA; Lovascio, P; Tatti, F; Boni, MR Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review(2024)Materials, 17.0, 4
29840 Spiess, S; Kucera, J; Vaculovic, T; Birklbauer, L; Habermaier, C; Conde, AS; Mandl, M; Haberbauer, M Zinc recovery from bioleachate using a microbial electrolysis cell and comparison with selective precipitation(2023)
10676 Kinnunen, P; Mäkinen, J; Salo, M; Soth, R; Komnitsas, K Efficiency of Chemical and Biological Leaching of Copper Slag for the Recovery of Metals and Valorisation of the Leach Residue as Raw Material in Cement Production(2020)Minerals, 10, 8
22317 Funari, V; Toller, S; Vitale, L; Santos, RM; Gomes, HI Urban mining of municipal solid waste incineration (MSWI) residues with emphasis on bioleaching technologies: a critical review(2023)Environmental Science And Pollution Research, 30.0, 21
8005 Castro, L; Blazquez, ML; Gonzalez, F; Munoz, JA Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes(2021)Molecules, 26, 20
Scroll