Knowledge Agora



Similar Articles

Title Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept
ID_Doc 8114
Authors Ali, SS; Elsamahy, T; Abdelkarim, EA; Al-Tohamy, R; Kornaros, M; Ruiz, HA; Zhao, T; Li, FH; Sun, JZ
Title Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept
Year 2022
Published
Abstract Due to global urbanization, industrialization, and economic development, biowastes generation represents negative consequences on the environment and human health. The use of generated biowastes as a feedstock for biodegradable bioplastic production has opened a new avenue for environmental sustainability from the circular (bio)economy standpoint. Biodegradable bioplastic production can contribute to the sustainability pillars (environmental, economic, and social). Furthermore, bioenergy, biomass, and biopolymers production after recycling of biodegradable bioplastic can help to maintain the energy-environment balance. Several types of biodegradable bioplastic, such as starch-based, polyhydroxyalkanoates, polylactic acid, and polybutylene adipate terephthalate, can achieve this aim. In this review, an overview of the main biowastes valorization routes and the main biodegradable bioplastic types of production, application, and biodegradability are discussed to achieve the transition to the circular economy. Additionally, end-of-life scenarios (up-cycle and down-cycle) are reviewed to attain the maximum environmental, social, and economic benefit from biodegradable bioplastic products under biorefinery concept.
PDF

Similar Articles

ID Score Article
25483 Ali, SS; Abdelkarim, EA; Elsamahy, T; Al-Tohamy, R; Li, FH; Kornaros, M; Zuorro, A; Zhu, DC; Sun, JZ Bioplastic production in terms of life cycle assessment: A state-of-the- art review(2023)
21349 Banu, JR; Sharmila, VG Review on food waste valorisation for bioplastic production towards a circular economy: sustainable approaches and biodegradability assessment(2023)Sustainable Energy & Fuels, 7.0, 14
22998 Serrano-Aguirre, L; Prieto, MA Can bioplastics always offer a truly sustainable alternative to fossil-based plastics?(2024)Microbial Biotechnology, 17.0, 4
20710 Bartolucci, L; Cordiner, S; De Maina, E; Kumar, G; Mele, P; Mulone, V; Iglinski, B; Piechota, G Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers(2023)International Journal Of Molecular Sciences, 24, 9
3156 Rosenboom, JG; Langer, R; Traverso, G Bioplastics for a circular economy(2022)Nature Reviews Materials, 7, 2
23634 Synani, K; Abeliotis, K; Velonia, K; Maragkaki, A; Manios, T; Lasaridi, K Environmental Impact and Sustainability of Bioplastic Production from Food Waste(2024)Sustainability, 16, 13
2660 Saravanan, A; Karishma, S; Kumar, PS; Rangasamy, G A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy(2023)
27692 Xu, MY; Yang, M; Sun, HS; Gao, M; Wang, QH; Wu, CF Bioconversion of biowaste into renewable energy and resources: A sustainable strategy(2022)
4783 Shogren, R; Wood, D; Orts, W; Glenn, G Plant-based materials and transitioning to a circular economy(2019)
6086 Zaborowska, M; Bernat, K The development of recycling methods for bio-based materials - A challenge in the implementation of a circular economy: A review(2023)Waste Management & Research, 41, 1
Scroll