Knowledge Agora



Similar Articles

Title Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability
ID_Doc 8172
Authors Modolo, RCE; Senff, L; Ferreira, VM; Tarelho, LAC; Moraes, CAM
Title Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability
Year 2018
Published Journal Of Material Cycles And Waste Management, 20.0, 2
Abstract Several types of industrial solid waste have been used as byproducts in the construction and materials industries. Some of the applications seem to be required from the environmental point of view as a contribution to circular economy. Nevertheless, durability of materials should be assessed to avoid future problems. This work evaluated the fly ash from forest biomass combustion as a potential additive replacing calcite in Portland cement-based mortars. Cement-based mortar formulations were prepared and characterized in the fresh and hardened states. In particular, the durability of samples cured for 1 year was assessed based on sulfate attack. Mortars cured for 360 days were pre-weighted and then totally immersed in a solution containing a well-defined concentration of sulfate. Seven-day immersion + drying cycles were carried out, and weight was determined after each cycle. Liquid solutions containing sulfate were renewed every 14 days. One set sample was kept soaked in tap water to be used as reference. The results revealed that replacing 20% of calcite by fly ash seems to be a suitable alternative concerning mechanical strength. However, sulfate attack tests showed that strength rapidly deteriorates using fly ashes as a replacement raw material.
PDF

Similar Articles

ID Score Article
25257 Ulewicz, M; Jura, J; Gnatowski, A Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion-A New Material for Sustainable Construction(2024)Sustainability, 16, 7
21822 Ulas, MA; Culcu, MB; Ulucan, M Valorization of recycled aggregates to eco-efficient lightweight self-compacting mortars: Studies on microstructure, mechanical, durability, environmental, and economic properties(2024)
14086 Sargent, P; Sandanayake, M; Law, DW; Hughes, DJ; Shifa, F; Borthwick, B; Scott, P Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag(2024)
3238 Morales, LF; Herrera, K; López, JE; Aguado, R; Saldarriaga, JF Circular economy strategy for the valorization of fly ash as a substitute for cement in monoliths (resistance and reactivity evaluation)(2024)Environmental Progress & Sustainable Energy, 43, 3
23188 Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources(2024)Materials, 17, 1
22164 Vasile, BS; Nicoara, AI; Surdu, VA; Ene, VL; Neacsu, IA; Stoica, AE; Oprea, O; Boerasu, I; Trusca, R; Vrabec, M; Miklavic, B; Sturm, S; Ow-Yang, C; Gulgun, MA; Bundur, ZB Fly-Ash Evaluation as Potential EOL Material Replacement of Cement in Pastes: Morpho-Structural and Physico-Chemical Properties Assessment(2022)Materials, 15.0, 9
9847 Wisniewski, K; Rutkowska, G; Jeleniewicz, K; Dabkowski, N; Wójt, J; Chalecki, M; Wierzbicki, T Ecologically Friendly Building Materials: A Case Study of Clay-Ash Composites for the Efficient Management of Fly Ash from the Thermal Conversion of Sewage Sludge(2024)Sustainability, 16.0, 9
15678 Czop, M; Lazniewska-Piekarczyk, B; Kajda-Szczesniak, M Evaluation of the Immobilization of Fly Ash from the Incineration of Municipal Waste in Cement Mortar Incorporating Nanomaterials-A Case Study(2022)Energies, 15, 23
13661 Fort, J; Sál, J; Sevcík, R; Dolezelová, M; Keppert, M; Jerman, M; Záleská, M; Stehel, V; Cerny, R Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects(2021)
14307 Sharma, S; Vyas, AK Evaluation of mechanical properties of cement mortars containing pond ash as partial replacement of river sand and prediction of properties by regression models(2024)European Journal Of Environmental And Civil Engineering, 28, 11
Scroll