Knowledge Agora



Similar Articles

Title Upcycling Fly Ash, Red Clay Brick Waste, and Paper Sludge as Feedstock for Manufacturing a Lightweight Extruded Composite: Design and Characterization
ID_Doc 8224
Authors Salazar, AMO; Isaza, AV; Montoya, JWR; Arcila, JMM; García, MFV
Title Upcycling Fly Ash, Red Clay Brick Waste, and Paper Sludge as Feedstock for Manufacturing a Lightweight Extruded Composite: Design and Characterization
Year 2023
Published Buildings, 13.0, 9
Abstract In the context of the circular economy and the adoption of one of its business models, namely "resource recovery", this study presents an opportunity to valorize industrial and urban wastes using alkaline activation technology to produce hybrid binders. Several alkali-activated binders were produced using response surface methodology based on a mixture of 45/45/10 clay brick waste, fly ash, and Portland cement. The compressive strength and setting time of each were evaluated. The hybrid cementitious pastes achieved up to 45 MPa after 28 days of setting. Based on the experimental data, two binders were selected as the cementitious matrix for composites, with paper sludge as the lightweight aggregate. Incorporating up to 45% volume of paper sludge allowed extrusion of the materials. The addition of paper sludge reduced the compressive and flexural strength. These results were explained by the decrease in density and the increase in porosity. However, there was an improvement in the thermal properties of the composites; in particular, the thermal conductivity range between 0.35 and 0.49 W/mK. Finally, it was found that the composites with 25% volume of paper sludge had the best combination of properties, positioning them as potential construction materials.
PDF

Similar Articles

ID Score Article
24300 Isaza, AV; Arcila, JMM; Restrepo, JW; Garcia, MFV; Pen, LVW Performance and applications of lightweight geopolymer and alkali activated composites with incorporation of ceramic, polymeric and lignocellulosic wastes as aggregates: A review(2023)Heliyon, 9, 10
23508 Lourenço, A; Silva, L; Fernandes, V; Sequeira, P Improved Cementitious Tile Adhesives' Workability and Mechanical Performance with the Use of Recycled Materials(2022)Infrastructures, 7, 9
18446 Fernando, S; Gunasekara, C; Law, DW; Nasvi, MCM; Setunge, S; Dissanayake, R Engineering properties of waste-based alkali activated concrete brick containing low calcium fly ash and rice husk ash: A comparison with traditional Portland cement concrete brick(2022)
10058 Payá, J; Soriano, L; Font, A; Rosado, MVB; Nande, JA; Balbuena, JMM Reuse of Industrial and Agricultural Waste in the Fabrication of Geopolymeric Binders: Mechanical and Microstructural Behavior(2021)Materials, 14.0, 9
10456 Moncea, MA; Dumitru, FD; Baraitaru, AG; Boboc, MG; Deák, G; Razak, RA Assessing the Recovery Opportunities of Different Types of Wastes by their Embedment in Inorganic Binders(2020)
7841 Robayo-Salazar, RA; Valencia-Saavedra, W; de Gutiérrez, RM Construction and Demolition Waste (CDW) Recycling-As Both Binder and Aggregates-In Alkali-Activated Materials: A Novel Re-Use Concept(2020)Sustainability, 12, 14
9847 Wisniewski, K; Rutkowska, G; Jeleniewicz, K; Dabkowski, N; Wójt, J; Chalecki, M; Wierzbicki, T Ecologically Friendly Building Materials: A Case Study of Clay-Ash Composites for the Efficient Management of Fly Ash from the Thermal Conversion of Sewage Sludge(2024)Sustainability, 16.0, 9
6107 Munoz, P; Letelier, V; Munoz, L; Bustamante, MA; Gencel, O; Sutcu, M The combined effect of bottom ashes and cellulose fibers on fired clay bricks(2021)
14045 Goel, G; Vasic, MV; Katiyar, NK; Kirthika, SK; Pezo, M; Dinakar, P Potential pathway for recycling of the paper mill sludge compost for brick making(2021)
4183 Shah, SAR; Ahmad, H; Alhazmi, H; Anwar, MK; Iqbal, F Utilization of Self-Consolidated Green Material for Sustainable Development: An Environment Friendly Waste Materials Application for Circular Economy(2021)Polymers, 13, 17
Scroll