Knowledge Agora



Similar Articles

Title Mg2+-doped LiFePO4/C cathode from expired lithium carbonate and ferrous sulfate tablets
ID_Doc 8301
Authors Liu, XX; Li, DD; Hou, HY; Meng, K; Wang, L; Zhu, J
Title Mg2+-doped LiFePO4/C cathode from expired lithium carbonate and ferrous sulfate tablets
Year 2019
Published Surface Innovations, 7.0, 5
Abstract The wide application and oversupply of various medicines are inevitably accompanied by the production of massive amounts of expired medicines, which can trigger the environmental contamination and waste of resources if these are not reasonably managed. For this reason, the efforts were made to recycle two expired medicines (lithium carbonate (Li2CO3) and ferrous sulfate (FeSO4) tablets) simultaneously into magnesium ion-doped lithium iron phosphate (LiFePO4; LFP)/carbon (C) powders through a facile high-temperature solid-state reaction. In addition, the economic feasibility was analyzed and discussed. The results suggested that 0.51 wt% magnesium ions were successfully doped into the lithium (Li) site of LFP/carbon, and the corresponding molecular formula was Li(0.9)2Mg(0.04)FePO(4)/C, which resulted in the double effects: a decrease in the unit cell volume and an increase in the electronic conductivity. Furthermore, the magnesium ion/LFP/carbon cathode also exhibited better electrochemical lithium-storage performance compared with the undoped LFP/carbon cathode, indicating high application feasibility in lithium-ion batteries. Additionally, the recycling process was economically profitable, which would stimulate the development of the circular economy of waste expired medicines and lithium-ion batteries.
PDF

Similar Articles

ID Score Article
6673 Hou, HY; Li, DD; Liu, XX; Yao, Y; Dai, ZP; Yu, CY Recovery of Expired Lithium Carbonate Tablets for LiFePO4/C Cathode(2020)Waste And Biomass Valorization, 11, 6
21575 Li, DD; Hou, HY; Liu, XX; Yao, Y; Dai, ZP; Yu, CY The synchronous reutilization of the expired ferrous sulfate granules and waste Li foils for LiFePO4/C cathode(2018)International Journal Of Hydrogen Energy, 43.0, 49
27087 Lan, J; Hou, HY; Huang, BX; Li, H; Li, JK The positive role of vitamin C in spindle-like LiFePO4/C cathode derived from two wastes(2022)Ionics, 28.0, 4
22475 Lan, J; Hou, HY; Yu, XH; Rong, J; Huang, BX Insights into the role of Li2FeP2O7 phase in LiFePO4/C composite cathode(2022)Ionics, 28.0, 11
10525 Liu, K; Wang, JX; Wang, MM; Zhang, QZ; Cao, Y; Huang, LB; Valix, M; Tsang, DCW Low-carbon recycling of spent lithium iron phosphate batteries via a hydro-oxygen repair route(2023)Green Chemistry, 25, 17
17170 Yadav, P; Jie, CJ; Tan, S; Srinivasan, M Recycling of cathode from spent lithium iron phosphate batteries(2020)
8504 Du, H; Kang, YQ; Li, CL; Zhao, Y; Wozny, J; Li, T; Tian, Y; Lu, J; Wang, L; Kang, FY; Tavajohi, N; Li, BH Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder(2023)Battery Energy, 2.0, 4
9653 Chen, XP; Yuan, L; Yan, SX; Ma, X Self-activation of Ferro-chemistry based advanced oxidation process towards in-situ recycling of spent LiFePO4 batteries(2023)
10839 Chen, ZM; Shen, CQ; Liu, FP; Wang, JL Selective Separation and Recovery of Li from Spent LiFePO4 Cathode Materials by Oxidation Roasting Followed by Low-Acid Pressure Leaching(2023)Metals, 13, 11
21477 Hou, HY; Li, DD; Liu, XX; Yao, Y; Dai, ZP; Yu, CY Recovery of waste Li foils from spent experimental Li-anode coin cells for LiFePO4/C cathode(2018)
Scroll