Knowledge Agora



Similar Articles

Title Mix design and mechanical performance of geopolymer binder for sustainable construction and building material
ID_Doc 8303
Authors Saeli, M; Novais, RM; Seabra, MP; Labrincha, JA
Title Mix design and mechanical performance of geopolymer binder for sustainable construction and building material
Year 2017
Published
Abstract Sustainability in construction is a major concern worldwide, due to the huge volume of materials and energy consumed by this sector. Associated supplementing industries (e.g. Portland cement production) constitute a significant source of CO2 emissions and global warming. Valorisation and reuse of industrial wastes and by-products make geopolymers a solid and sustainable via to be followed as a valid alternative to Portland cement. In this work the mix design of a green fly ash-based geopolymer is evaluated as an environmentally friendly construction material. In the pursuit of sustainability, wastes from a regional kraft pulp industry are exploited for the material processing. Furthermore, a simple, reproducible, and low-cost manufacture is used. The mix design is hence optimised in order to improve the desirable mechanical performance of the material intended for structural applications in construction. Tests indicate that geopolymers may efficiently substitute the ordinary Portland cement as a mortar/concrete binder. Furthermore, valorisation and reuse of wastes in geopolymers is a suboptimal way of gaining financial surplus for the involved industrial players, while contributes for the implementation of a desirable circular economy.
PDF https://doi.org/10.1088/1757-899x/264/1/012002

Similar Articles

ID Score Article
28375 La Scalia, G; Saeli, M; Adelfio, L; Micale, R From lab to industry: Scaling up green geopolymeric mortars manufacturing towards circular economy(2021)
27521 Ben Ali, M; El Fadili, H; El Mahi, M; Aziz, A; Moussadik, A; Devkota, S; Lotfi, E Preparation of greener geopolymer binder based fly ash: An effective strategy toward carbon neutrality(2024)Ceramics International, 50.0, 15
22348 Khan, SA; Kul, A; Sahin, O; Sahmaran, M; Al-Ghamdi, SG; Koç, M Energy-environmental performance assessment and cleaner energy solutions for a novel Construction and Demolition Waste-based geopolymer binder production process(2022)
25384 Kugler, F; Krcmar, W; Teipel, U Setting behavior and mechanical properties of geopolymers from fly ash and real construction waste(2024)International Journal Of Ceramic Engineering And Science, 6, 1
13439 Saeli, M; Senff, L; Tobaldi, DM; La Scalia, G; Seabra, MP; Labrincha, JA Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material(2019)Sustainability, 11, 12
24032 Yalcinkaya, B; Spirek, T; Bousa, M; Louda, P; Ruzek, V; Rapiejko, C; Buczkowska, KE Unlocking the Potential of Biomass Fly Ash: Exploring Its Application in Geopolymeric Materials and a Comparative Case Study of BFA-Based Geopolymeric Concrete against Conventional Concrete(2023)Ceramics-Switzerland, 6, 3
25870 Danish, A; Torres, AS; Moro, C; Salim, MU Hope or hype? Evaluating the environmental footprint of reclaimed fly ash in geopolymer production(2024)
1709 Shehata, N; Mohamed, OA; Sayed, ET; Abdelkareem, MA; Olabi, AG Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials(2022)
20457 Lazarescu, AV; Ionescu, BA; Hegyi, A; Florean, C Alkali-Activated Fly Ash Based Geopolymer Paving Blocks: Green Materials For Future Conservation Of Resources(2022)International Journal Of Conservation Science, 13, 1
25882 Kugler, F; Karrer, J; Krcmar, W; Teipel, U Setting behavior and mechanical properties of concrete rubble fly ash geopolymers(2022)
Scroll