Knowledge Agora



Similar Articles

Title Food Waste Management for Biogas Production in the Context of Sustainable Development
ID_Doc 8313
Authors Ferdes, M; Zabava, BS; Paraschiv, G; Ionescu, M; Dinca, MN; Moiceanu, G
Title Food Waste Management for Biogas Production in the Context of Sustainable Development
Year 2022
Published Energies, 15.0, 17
Abstract In the context of increasing pressure regarding the sustainable utilization of food waste in a circular economy, one of the trends is their biological transformation, through anaerobic digestion, into biogas as a renewable source of energy. We presented the physical-chemical properties of the main categories of food waste from different sources: dairy, meat, and poultry, fish, fruit and vegetable, cereal and bakery, brewing and winery industries, and others. Due to the high organic load, the presence of a multitude of nutrients, and an insignificant amount of inhibitors, food waste can be successfully used in the biogas production process in co-digestion with other materials. Physical (mechanical and thermal), chemical (alkali, acid, and oxidative), and biological (enzymatic, bacterial, and fungal) techniques have been widely used for pretreatment of different substrate types, including food waste. These pretreatments facilitate the degradation of pretreated food waste during anaerobic digestion and thus lead to an enhancement in biogas production. The purpose of this study is to review the situation of food waste generated in the food industry and to formulate the main trends of progress in the use of this waste in the anaerobic digestion process.
PDF

Similar Articles

ID Score Article
10064 Caruso, MC; Braghieri, A; Capece, A; Napolitano, F; Romano, P; Galgano, F; Altieri, G; Genovese, F Recent Updates on the Use of Agro-Food Waste for Biogas Production(2019)Applied Sciences-Basel, 9.0, 6
10086 Bedoic, R; Spehar, A; Puljko, J; Cucek, L; Cosic, B; Puksec, T; Duic, N Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production(2020)
7987 Chew, KR; Leong, HY; Khoo, KS; Vo, DVN; Anjum, H; Chang, CK; Show, PL Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review(2021)Environmental Chemistry Letters, 19, 4
9304 Dhull, P; Lohchab, RK; Kumar, S; Kumari, M; Shaloo; Bhankhar, AK Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy(2024)Bioenergy Research, 17.0, 2
10759 Morales-Polo, C; Cledera-Castro, MD; Revuelta-Aramburu, M; Hueso-Kortekaas, K Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments(2021)Plants-Basel, 10, 7
14974 Kucic, D; Kopcic, N; Briski, F Biodegradation of Agro-industrial Waste(2017)Chemical And Biochemical Engineering Quarterly, 31, 4
8270 Kougias, PG; Angelidaki, I Biogas and its opportunities-A review(2018)Frontiers Of Environmental Science & Engineering, 12.0, 3
5461 Qayyum, S; Tahir, A; Mian, AH; Zeb, S; Siddiqui, MF; Rehman, B Optimizing biogas production through anaerobic digestion: transforming food waste and agricultural residues into renewable energy within a circular economy paradigm(2024)
12398 Archana, K; Visckram, AS; Kumar, PS; Manikandan, S; Saravanan, A; Natrayan, L A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals(2024)
10455 Sevillano, CA; Pesantes, AA; Carpio, EP; Martínez, EJ; Gómez, X Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario(2021)Entropy, 23, 2
Scroll