Knowledge Agora



Similar Articles

Title Tannery waste-derived biochar as a carrier of micronutrients essential to plants
ID_Doc 8368
Authors Skrzypczak, D; Szopa, D; Mikula, K; Izydorczyk, G; Basladynska, S; Hoppe, V; Pstrowska, K; Wzorek, Z; Kominko, H; Kulazynski, M; Moustakas, K; Chojnacka, K; Witek-Krowiak, A
Title Tannery waste-derived biochar as a carrier of micronutrients essential to plants
Year 2022
Published
Abstract The leather tannery industry generates about 33 Mt/year of solid waste with different properties, turning its management into a challenge. One of the valorization methods of tannery wastes is the production of biochar by pyrolysis of leather scratches. Biochar's sorption properties and its high nitrogen content (10%) make it suitable for its application as a soil conditioner or carrier of microelements for fertilizers. The paper presents an innovative spray method to enrich biochar with cationic micronutrients: Cu, Mn, Zn. Enriched biochar contained 1095 mg/kg Cu(II), 1334 mg/kg Mn(II) and 1205 mg/kg Zn(II). The high bioavailability of nutrients and the effectiveness of the new fertilizer were demonstrated in extraction in vitro tests - the analysis of leachability of elements to water and bioavailability of micro-nutrients. The functional properties of enriched biochar were examined in vivo (germination, pot) tests. A high biomass increase (approximately 10%) was observed compared to the group fertilized with a commercial product. The proposed solution benefits the environment in that it is made from alternative resources from which innovative fertilizers are produced according to the circular economy concept.
PDF

Similar Articles

ID Score Article
20225 Marcinczyk, M; Ok, YS; Oleszczuk, P From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars(2022)
9794 Samoraj, M; Mironiuk, M; Witek-Krowiak, A; Izydorczyk, G; Skrzypczak, D; Mikula, K; Basladynska, S; Moustakas, K; Chojnacka, K Biochar in environmental friendly fertilizers-Prospects of development products and technologies(2022)
26776 Rosa, D; Petruccelli, V; Iacobbi, MC; Brasili, E; Badiali, C; Pasqua, G; Di Palma, L Functionalized biochar from waste as a slow-release nutrient source: Application on tomato plants(2024)Heliyon, 10, 8
9489 López-Cano, I; Cayuela, ML; Sánchez-García, M; Sánchez-Monedero, MA Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of BiocharPart 2: Agronomical Evaluation as Soil Amendment(2018)Sustainability, 10.0, 6
4534 Hu, Q; Jung, J; Chen, DX; Leong, K; Song, S; Li, FH; Mohan, BC; Yao, ZY; Prabhakar, AK; Lin, XH; Lim, EY; Zhang, L; Souradeep, G; Ok, YS; Kua, HW; Li, SFY; Tan, HTW; Dai, YJ; Tong, YW; Peng, YH; Joseph, S; Wang, CH Biochar industry to circular economy(2021)
6133 Parameswari, E; Kalaiarasi, R; Davamani, V; Kalaiselvi, P; Paulsebastian, S; Ilakiya, T Potentials of surface modified biochar for removal of Cr from tannery effluent and its regeneration to ensure circular economy(2024)Bioremediation Journal, 28, 2
13435 Fdez-Sanromán, A; Pazos, M; Rosales, E; Sanromán, MA Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review(2020)Applied Sciences-Basel, 10, 21
13944 Díaz, B; Sommer-Márquez, A; Ordoñez, PE; Bastardo-González, E; Ricaurte, M; Navas-Cárdenas, C Synthesis Methods, Properties, and Modifications of Biochar-Based Materials for Wastewater Treatment: A Review(2024)Resources-Basel, 13, 1
15063 Bousdra, T; Papadimou, SG; Golia, EE The Use of biochar in the Remediation of Pb, Cd, and Cu-Contaminated Soils. The Impact of biochar Feedstock and Preparation Conditions on Its Remediation Capacity(2023)Land, 12, 2
21767 Wystalska, K; Kwarciak-Kozlowska, A Utilization of Digestate from Agricultural and Food Waste for the Production of Biochar Used to Remove Methylene Blue(2023)Sustainability, 15.0, 20
Scroll