Knowledge Agora



Similar Articles

Title Recovery of value-added products by mining microalgae
ID_Doc 8450
Authors Liu, RB; Li, SQ; Tu, YF; Hao, XD; Qiu, FG
Title Recovery of value-added products by mining microalgae
Year 2022
Published
Abstract Microalgae blooms are always blamed for the interruption of the aquatic environment and pose a risk to the source of drinking water. Meanwhile, microalgae as primary producers are a kind of resource pool and could benefit the environment and contribute to building a circular economy. The lipid and polyhydroxybutyrate (PHB) in the cells of microalgae could be alternatives to fossil fuels and plastics, respectively, which are the culprits of global warming and plastic pollution. Besides, some microalgae are rich in nutrients, such as proteins and astaxanthin, which make themselves suitable for feed additives. As wastewater is rich in nutrients necessary for microalgae, thus, value-added product recovery via microalgae could be an approach to valorizing wastewater. However, a one-size-fits-all approach deploying various wastewater for the above products cannot be summarized. On the contrary, specific technical protocols should be tailored regarding each product in microalgae biomass with various wastewater. Thus, this review is to summarize the research effort by far on wastewater-cultivated microalgae for value-added products. Wastewater type, regulation methods, and targeted product yields are compiled and discussed and are expected to guide future extrapolation into a commercial scale.
PDF

Similar Articles

ID Score Article
2956 Chhandama, M; Rai, PK; Lalawmpuii Coupling bioremediation and biorefinery prospects of microalgae for circular economy(2023)
16921 Olguín, EJ; Sánchez-Galván, G; Arias-Olguín, II; Melo, FJ; González-Portela, RE; Cruz, L; De Philippis, R; Adessi, A Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds(2022)Biology-Basel, 11, 8
3749 Kholssi, R; Ramos, PV; Marks, EAN; Montero, O; Rad, C 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy(2021)
25024 Alavianghavanini, A; Shayesteh, H; Bahri, PA; Vadiveloo, A; Moheimani, NR Microalgae cultivation for treating agricultural effluent and producing value-added products(2024)
12761 Catone, CM; Ripa, M; Geremia, E; Ulgiati, S Bio-products from algae-based biorefinery on wastewater: A review(2021)
23918 Goswami, RK; Mehariya, S; Verma, P; Lavecchia, R; Zuorro, A Microalgae-based biorefineries for sustainable resource recovery from wastewater(2021)
18730 Geremia, E; Ripa, M; Catone, CM; Ulgiati, S A Review about Microalgae Wastewater Treatment for Bioremediation and Biomass Production-A New Challenge for Europe(2021)Environments, 8.0, 12
8645 Kadri, MS; Nayana, K; Firhi, RF; Abdi, G; Sukumar, C; Kulanthaiyesu, A Greening the oil industry: Microalgae biorefinery for sustainable oil-produced water treatment and resource recovery(2024)
6232 Li, G; Hu, RC; Wang, N; Yang, TL; Xu, FZ; Li, JL; Wu, JH; Huang, ZG; Pan, MM; Lyu, T Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment(2022)
24178 Tuyen, NV; Limjuco, LA; Lee, K; Dang, NM Integrated Applications of Microalgae to Wastewater Treatment and Biorefinery: Recent Advances and Opportunities(2022)Applied Chemistry For Engineering, 33, 3
Scroll