Knowledge Agora



Similar Articles

Title Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production
ID_Doc 8513
Authors Lazorenko, G; Kasprzhitskii, A; Fini, EH
Title Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production
Year 2022
Published
Abstract This work investigates the recycling potential of polyethylene terephthalate (PET) bottle wastes as natural sand substitute in geopolymer (GP) mixtures to reduce plastic pollution and transition to a circular economy. Fresh and hardened properties of coal fly ash-based GP mortars with replacement of quartz sand by grinded fine PET particles of 0.315-1.25 mm in size (20%, 40%, 60%, 80% and 100%) were evaluated. It was found out that an increase in plastic aggregate content leads to a decrease in compressive strength and flexural strength of geo-polymer mortars. In turn, the splitting tensile strength increased slightly when up to 40% of the sand volume was replaced by plastic aggregate. At this replacement level, the fresh geopolymer mixes had workability close to that of conventional mortar. The flake-like PET particles contributed to the reduction of cracking of the specimens and more ductile failure modes. Furthermore, GP mortars containing recycled PET bottle wastes at the full replacement level of natural aggregate showed advantages in lightweight (up to 15%), water absorption (up to 26%) and thermal insulation properties (up to 59%), enabling production of sustainable construction materials with environmental and economic benefits.
PDF

Similar Articles

ID Score Article
12174 Todaro, F; Petrella, A; Santomasi, G; De Gisi, S; Notarnicola, M Environmental Sustainable Cement Mortars Based on Polyethylene Terephthalate from Recycling Operations(2023)Materials, 16.0, 5
9617 Ul Haq, MZ; Sood, H; Kumar, R; Ricciotti, L Sustainable geopolymers from polyethylene terephthalate waste and industrial by-products: a comprehensive characterisation and performance predictions(2024)Journal Of Materials Science, 59.0, 9
10419 da Silva, TR; Cecchin, D; de Azevedo, ARG; Valadao, I; Alexandre, J; da Silva, FC; Marvila, MT; Gunasekaran, M; Garcia, F; Monteiro, SN Technological Characterization of PET-Polyethylene Terephthalate-Added Soil-Cement Bricks(2021)Materials, 14, 17
26952 Pawluczuk, E; Kalinowska-Wichrowska, K; Soomro, M Alkali-Activated Mortars with Recycled Fines and Hemp as a Sand(2021)Materials, 14, 16
15874 Oliveira, MR; Garcia, MD; Castro, ACM; Silva, TN Mortar with pet-Preliminary results(2020)
13439 Saeli, M; Senff, L; Tobaldi, DM; La Scalia, G; Seabra, MP; Labrincha, JA Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material(2019)Sustainability, 11, 12
18153 Kangavar, ME; Lokuge, W; Manalo, A; Karunasena, W; Ozbakkaloglu, T Development of sustainable concrete using recycled polyethylene terephthalate (PET) granules as fine aggregate(2023)
7670 Górak, P; Postawa, P; Trusilewicz, LN; Lagosz, A Lightweight PET based composite aggregates in Portland cement materials - Microstructure and physicochemical performance(2021)
13850 Volpintesta, F; Finocchiaro, C; Barone, G; Mazzoleni, P; Paris, E Compositional Differences in Construction and Demolition Wastes (CDWs) for Geopolymer Mortars: A Comparative Study Using Different Precursors and Alkaline Reagents(2024)Minerals, 14, 4
28375 La Scalia, G; Saeli, M; Adelfio, L; Micale, R From lab to industry: Scaling up green geopolymeric mortars manufacturing towards circular economy(2021)
Scroll