Knowledge Agora



Similar Articles

Title Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer
ID_Doc 8519
Authors Barbosa, JC; Reizabal, A; Correia, DM; Fidalgo-Marijuan, A; Gonçalves, R; Silva, MM; Lanceros-Mendez, S; Costa, CM
Title Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer
Year 2020
Published
Abstract Sustainable materials are increasingly needed in lithium ion batteries in order to reduce their environmental impact and improve their recyclability. This work reports on the production of separators using poly (L-lactic acid) (PLLA) for lithium ion battery applications. PLLA separators were obtained by solvent casting technique, by varying polymer concentration in solution between 8 wt% and 12 wt% in order to evaluate their morphology, thermal, electrical and electrochemical properties. It is verified that morphology and porosity can be tuned by varying polymer concentration and that the separators are thermally stable up to 250 degrees C. The best ionic conductivity of 1.6 mS/cm was obtained for the PLLA separator prepared from 10 wt% polymer concentration in solution, due to the synergistic effect of the morphology and electrolyte uptake. For this membrane, a high discharge capacity value of 93 mAh/g was obtained at the rate of 1C. In this work, it is demonstrated that PLLA is a good candidate for the development of separator membranes, in order to produce greener and environmentally friendly batteries in a circular economy context. (C) 2020 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
9906 Li, L; Duan, YT Engineering Polymer-Based Porous Membrane for Sustainable Lithium-Ion Battery Separators(2023)Polymers, 15.0, 18
27426 Lizundia, E; Costa, CM; Alves, R; Lanceros-Méndez, S Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties(2020)
9621 Serra, JP; Uranga, J; Gonçalves, R; Costa, CM; de la Caba, K; Guerrero, P; Lanceros-Mendez, S Sustainable lithium-ion battery separators based on cellulose and soy protein membranes(2023)
10451 Mittal, N; Ojanguren, A; Cavasin, N; Lizundia, E; Niederberger, M Transient Rechargeable Battery with a High Lithium Transport Number Cellulosic Separator(2021)Advanced Functional Materials, 31, 33
8398 Barbosa, JC; Gonçalves, R; Costa, CM; Lanceros-Méndez, S Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries(2022)Acs Omega, 7.0, 17
17816 Saif, HM; Huertas, RM; Pawlowski, S; Crespo, JG; Velizarov, S Development of highly selective composite polymeric membranes for Li+/Mg2+ separation(2021)
27150 Serra, JP; Salazar, H; Fidalgo-Marijuan, A; Gonçalves, R; Martins, PM; Lanceros-Mendez, S; Costa, CM Iron oxide/poly (vinylidene fluoride-hexafluoropropylene) membranes for lithium-ion battery separator and arsenic removal applications(2023)Journal Of Environmental Chemical Engineering, 11.0, 6
8504 Du, H; Kang, YQ; Li, CL; Zhao, Y; Wozny, J; Li, T; Tian, Y; Lu, J; Wang, L; Kang, FY; Tavajohi, N; Li, BH Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder(2023)Battery Energy, 2.0, 4
11042 Salado, M; Lizundia, E Advances, challenges, and environmental impacts in metal-air battery electrolytes(2022)
21876 Ojanguren, A; Mittal, N; Lizundia, E; Niederberger, M Stable Na Electrodeposition Enabled by Agarose-Based Water-Soluble Sodium Ion Battery Separators(2021)Acs Applied Materials & Interfaces, 13.0, 18
Scroll