Knowledge Agora



Similar Articles

Title Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials
ID_Doc 8534
Authors Costa, C; Viana, A; Silva, C; Marques, EF; Azoia, NG
Title Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials
Year 2022
Published
Abstract Chemical recycling can be used to separate fibers that are constituents of different types of fabrics. This type of process can be considered one of the most effective forms of recycling, given that a large part of fabrics is made up of fiber mixtures. As part of an innovative circular strategy, the main goal of this work was to study the conditions for extracting cellulose from mixed textile wastes by acid hydrolysis and further transform it into cellulose derivatives, thus contributing to reduce such wastes and expanding the possible sources of cellulose. Our work covers a wide range of textile wastes and addresses the main technical challenges of this recycling methodology. The percentage of recovered cellulose powder varies between 65 and 88%. To evaluate the feasibility of using the extracted cellulose as raw material to produce cellulose derivatives, two strategies were applied: etherification to obtain sodium carboxymethylcellulose (with degree of substituion between 0.27 and 0.61) and esterification, to obtain cellulose acetate (with degree of substituion of 2.59). The cellulose derivatives obtained are very useful as additives in the textile industry, and hence the concept and practice of a circular economy are promoted.
PDF

Similar Articles

ID Score Article
68836 Sanchis-Sebastiá, M; Ruuth, E; Stigsson, L; Galbe, M; Wallberg, O Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis(2021)
66573 Suen, DWS; Chan, EMH; Lau, YY; Lee, RHP; Tsang, PWK; Ouyang, SB; Tsang, CW Sustainable Textile Raw Materials: Review on Bioprocessing of Textile Waste via Electrospinning(2023)Sustainability, 15, 15
9259 Sathasivam, T; Sugiarto, S; Yew, MPY; Oh, XY; Chan, SY; Chan, BQY; Tim, MJ; Kai, D Transforming textile waste into nanocellulose for a circular future(2024)Nanoscale, 16.0, 30
27554 Piribauer, B; Bartl, A; Ipsmiller, W Enzymatic textile recycling - best practices and outlook(2021)Waste Management & Research, 39.0, 10
16600 Subramanian, K; Sarkar, MK; Wang, HM; Qin, ZH; Chopra, SS; Jin, MS; Kumar, V; Chen, C; Tsang, CW; Lin, CSK An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach - research trends, opportunities and challenges(2022)Critical Reviews In Environmental Science And Technology, 52, 21
7182 Haslinger, S; Hummel, M; Anghelescu-Hakala, A; Määttänen, M; Sixta, H Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers(2019)
5530 Choudhury, K; Tsianou, M; Alexandridis, P Recycling of Blended Fabrics for a Circular Economy of Textiles: Separation of Cotton, Polyester, and Elastane Fibers(2024)Sustainability, 16, 14
12688 Oshikata, MSK; Blas, NS; Silva, BD; Fukamizu, DI; da Silva, DRB; Gauto, LP; Cruz, AJG; Morandim-Giannetti, AD; Pratto, B Cotton waste upcycling: biofuel and cellulose derivatives production(2024)Cellulose, 31.0, 11
20667 Piribauer, B; Bartl, A Textile recycling processes, state of the art and current developments: A mini review(2019)Waste Management & Research, 37, 2
3688 Neto, GCD; Teixeira, MM; Souza, GLV; Arns, VD; Tucci, HNP; Amorim, M Assessment of the Eco-Efficiency of the Circular Economy in the Recovery of Cellulose from the Shredding of Textile Waste(2022)Polymers, 14, 7
Scroll