Knowledge Agora



Similar Articles

Title Advanced membrane-based high-value metal recovery from wastewater
ID_Doc 8574
Authors Gebreslassie, G; Desta, HG; Dong, YC; Zheng, XY; Zhao, M; Lin, B
Title Advanced membrane-based high-value metal recovery from wastewater
Year 2024
Published
Abstract Considering the circular economy and environmental protection, sustainable recovery of high-value metals from wastewater has become a prominent concern. Unlike conventional methods featuring extensive chemicals or energy consumption, membrane separation technology plays a crucial role in facilitating the sustainable and efficient recovery of valuable metals from wastewater due to its attractive features. In this review, we first briefly summarize the sustainable supply chain and significance of sustainable recovery of aqueous high-value metals. Then, we review the most recent advances and application potential in promising state-of-the-art membranebased technologies for recovery of high-value metals (silver, gold, rhenium, platinum, ruthenium, palladium, iridium, osmium, and rhodium) from wastewater effluents. In particular, pressure-based membranes, liquid membranes, membrane distillation, forward osmosis, electrodialysis and membrane-based hybrid technologies and their mechanism of high-value metal recovery is thoroughly discussed. Then, engineering application and economic sustainability are also discussed for membrane-based high-value metal recovery. The review finally concludes with a critical and insightful overview of the techno-economic viability and future research direction of membrane technologies for efficient high-value metal recovery from wastewater.
PDF

Similar Articles

ID Score Article
22290 Botelho, AB Jr; Tenório, JAS; Espinosa, DCR Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art(2023)Processes, 11.0, 4
27339 López, J; Gibert, O; Cortina, JL Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview(2021)
27016 Moreira, VR; Torres, EA; Balarini, JC; Amaral, MCS Rethinking gold mining wastewater treatment with an integrated process of membrane distillation and membrane contactors for minimal waste discard and resource recovery(2023)
6547 Moreira, VR; Castro, LMC; Balarini, JC; Santos, TLM; Amaral, MCS Recovering and reusing water, H2SO4, nickel and cobalt from gold mining wastewater using air-gap membrane distillation and solvent extraction(2024)
22055 Abidli, A; Huang, YF; Ben Rejeb, Z; Zaoui, A; Park, CB Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future(2022)
14677 Cerrillo-Gonzalez, MD; Villen-Guzman, M; Rodriguez-Maroto, JM; Paz-Garcia, JM Metal Recovery from Wastewater Using Electrodialysis Separation(2024)Metals, 14, 1
29379 Castro-Muñoz, R; Barragán-Huerta, BE; Fíla, V; Denis, PC; Ruby-Figueroa, R Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds(2018)Waste And Biomass Valorization, 9.0, 4
22595 Santoro, S; Estay, H; Avci, AH; Pugliese, L; Ruby-Figueroa, R; Garcia, A; Aquino, M; Nasirov, S; Straface, S; Curcio, E Membrane technology for a sustainable copper mining industry: The Chilean paradigm(2021)
27112 Kumar, R; Liu, C; Ha, GS; Kim, KH; Chakrabortty, S; Tripathy, SK; Park, YK; Khan, MA; Yadav, KK; Cabral-Pinto, MMS; Jeon, BH A novel membrane-integrated sustainable technology for downstream recovery of molybdenum from industrial wastewater(2023)
21527 Lopez, J; Gibert, O; Cortina, JL Evaluation of an extreme acid-resistant sulphonamide based nanofiltration membrane for the valorisation of copper acidic effluents(2021)
Scroll