Knowledge Agora



Similar Articles

Title Depolymerization within a Circular Plastics System
ID_Doc 8799
Authors Clark, RA; Shaver, MP
Title Depolymerization within a Circular Plastics System
Year 2024
Published Chemical Reviews, 124.0, 5
Abstract The societal importance of plastics contrasts with the carelessness with which they are disposed. Their superlative properties lead to economic and environmental efficiency, but the linearity of plastics puts the climate, human health, and global ecosystems at risk. Recycling is fundamental to transitioning this linear model into a more sustainable, circular economy. Among recycling technologies, chemical depolymerization offers a route to virgin quality recycled plastics, especially when valorizing complex waste streams poorly served by mechanical methods. However, chemical depolymerization exists in a complex and interlinked system of end-of-life fates, with the complementarity of each approach key to environmental, economic, and societal sustainability. This review explores the recent progress made into the depolymerization of five commercial polymers: poly(ethylene terephthalate), polycarbonates, polyamides, aliphatic polyesters, and polyurethanes. Attention is paid not only to the catalytic technologies used to enhance depolymerization efficiencies but also to the interrelationship with other recycling technologies and to the systemic constraints imposed by a global economy. Novel polymers, designed for chemical depolymerization, are also concisely reviewed in terms of their underlying chemistry and potential for integration with current plastic systems.
PDF https://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.3c00739

Similar Articles

ID Score Article
16254 Hong, M; Chen, EYX Chemically recyclable polymers: a circular economy approach to sustainability(2017)Green Chemistry, 19, 16
11117 Shekhar, S; Hoque, ME; Bajpai, PK; Islam, H; Sharma, B Chemical upcycling of plastics as a solution to the plastic trash problem for an ideal, circular polymer economy and energy recovery(2024)Environment Development And Sustainability, 26, 3
19996 Shi, CX; Quinn, EC; Diment, WT; Chen, EYX Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy(2024)Chemical Reviews, 124.0, 7
23588 Payne, J; Jones, MD The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities(2021)Chemsuschem, 14, 19
28435 Highmoore, JF; Kariyawasam, LS; Trenor, SR; Yang, Y Design of depolymerizable polymers toward a circular economy(2024)Green Chemistry, 26.0, 5
24607 Chen, H; Wan, K; Zhang, YY; Wang, YQ Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future(2021)Chemsuschem, 14, 19
19730 Li, XL; Ma, K; Xu, F; Xu, TQ Advances in the Synthesis of Chemically Recyclable Polymers(2023)Chemistry-An Asian Journal, 18.0, 3
14452 Häussler, M; Eck, M; Rothauer, D; Mecking, S Closed-loop recycling of polyethylene-like materials(2021)Nature, 590, 7846
20323 Unni, AB; Joseph, TM Enhancing Polymer Sustainability: Eco-Conscious Strategies(2024)Polymers, 16, 13
29037 Purohit, VB; Pieta, M; Pietrasik, J; Plummer, CM Towards sustainability and a circular Economy: ROMP for the goal of fully degradable and chemically recyclable polymers(2024)
Scroll