Knowledge Agora



Similar Articles

Title Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review
ID_Doc 8935
Authors Girometta, C; Picco, AM; Baiguera, RM; Dondi, D; Babbini, S; Cartabia, M; Pellegrini, M; Savino, E
Title Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review
Year 2019
Published Sustainability, 11.0, 1
Abstract Reducing the use of non-renewable resources is a key strategy of a circular economy. Mycelium-based foams and sandwich composites are an emerging category of biocomposites relying on the valorization of lignocellulosic wastes and the natural growth of the living fungal organism. While growing, the fungus cements the substrate, which is partially replaced by the tenacious biomass of the fungus itself. The final product can be shaped to produce insulating panels, packaging materials, bricks or new-design objects. Only a few pioneer companies in the world retain a significant know-how, as well as the ability to provide the material characterization. Moreover, several technical details are not revealed due to industrial secrecy. According to the available literature, mycelium-based biocomposites show low density and good insulation properties, both related to acoustic and thermal aspects. Mechanical properties are apparently inferior in comparison to expanded polystyrene (EPS), which is the major synthetic competitor. Nevertheless, mycelium-based composites can display an enormous variability on the basis of: fungal species and strain; substrate composition and structure; and incubation conditions. The aim of the present review is to summarize technical aspects and properties of mycelium-based biocomposites focusing on both actual applications and future perspectives.
PDF

Similar Articles

ID Score Article
18766 Bonga, KB; Bertolacci, L; Contardi, M; Paul, UC; Zafar, MS; Mancini, G; Marini, L; Ceseracciu, L; Fragouli, D; Athanassiou, A Mycelium Agrowaste-Bound Biocomposites as Thermal and Acoustic Insulation Materials in Building Construction(2024)Macromolecular Materials And Engineering, 309.0, 6
23718 Alemu, D; Tafesse, M; Mondal, AK Mycelium-Based Composite: The Future Sustainable Biomaterial(2022)
14129 Elsacker, E; Vandelook, S; Van Wylick, A; Ruytinx, J; De Laet, L; Peeters, E A comprehensive framework for the production of mycelium-based lignocellulosic composites(2020)
4004 Barta, DG; Simion, I; Tiuc, AE; Vasile, O Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy(2024)Materials, 17, 2
7994 Brudny, K; Lach, M; Kozub, B; Korniejenko, K Development of fungal biocomposites for construction applications(2024)Materialwissenschaft Und Werkstofftechnik, 55, 5
9319 Angelova, GV; Brazkova, MS; Krastanov, AI Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review(2021)Zeitschrift Fur Naturforschung Section C-A Journal Of Biosciences, 76.0, 11-12
8183 Gan, JK; Soh, E; Saeidi, N; Javadian, A; Hebel, DE; Le Ferrand, H Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage(2022)Scientific Reports, 12.0, 1
26663 Nussbaumer, M; van Opdenbosch, D; Engelhardt, M; Briesen, H; Karl, T Material characterization of pressed and unpressed wood-mycelium composites derived from two Trametes species(2023)
9121 Saglam, SS; Özgünler, SA Production Of Mycelium-Based Composite Materials And Evaluation Of Thermal Insulation Performance(2024)Journal Of Green Building, 19.0, 2
12748 Alaux, N; Vasatko, H; Maierhofer, D; Saade, MRM; Stavric, M; Passer, A Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites(2024)International Journal Of Life Cycle Assessment, 29.0, 2
Scroll