Knowledge Agora



Similar Articles

Title Sorting, Characterization, Environmentally Friendly Recycling, and Reuse of Components from End-of-Life 18650 Li Ion Batteries
ID_Doc 9017
Authors Cattaneo, P; Callegari, D; Merli, D; Tealdi, C; Vadivel, D; Milanese, C; Kapelyushko, V; D'Aprile, F; Quartarone, E
Title Sorting, Characterization, Environmentally Friendly Recycling, and Reuse of Components from End-of-Life 18650 Li Ion Batteries
Year 2023
Published Advanced Sustainable Systems, 7.0, 9
Abstract The rapid growth in demand for lithium-ion batteries (LIBs) is posing challenges in the management of end-of-life (EoL) systems and the supply of critical raw materials (CRMs), especially lithium, cobalt, and nickel. Such challenges can be addressed by collecting and recycling spent LIBs through economically and environmentally sustainable processes and by enabling the transition to a circular economy vision based on the use of secondary raw materials. These processes involve not only the metallurgic approaches to recover the critical metals, but also the pretreatment approaches that are crucial to enhance the recovery efficiency of other valuable materials (e.g., graphite, fluorinated compounds, binders, electrolyte). Herein, pretreatment processes ranging from the disassembling, opening, and sorting to the component separation, collection, and recovery, are described for the EoL 18650-type commercial LIB. A closed loop of eco-friendly recycling to fully recover the composite cathode, i.e., the cathode active material (CAM), the fluorinated binder, and the conductive carbon, as well as the separator, is presented. The recovery approach is based on green solvents and is designed to limit water consumption. The recovered materials are used to assemble a new cell, and the electrochemical characterization is used to evaluate the effective feasibility of the whole recycling process.
PDF https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adsu.202300161

Similar Articles

ID Score Article
229 Harper, GDJ; Kendrick, E; Anderson, PA; Mrozik, W; Christensen, P; Lambert, S; Greenwood, D; Das, PK; Ahmeid, M; Milojevic, Z; Du, WJ; Brett, DJL; Shearing, PR; Rastegarpanah, A; Stolkin, R; Sommerville, R; Zorin, A; Durham, JL; Abbott, AP; Thompson, D; Browning, ND; Mehdi, BL; Bahri, M; Schanider-Tontini, F; Nicholls, D; Stallmeister, C; Friedrich, B; Sommerfeld, M; Driscoll, LL; Jarvis, A; Giles, EC; Slater, PR; Echavarri-Bravo, V; Maddalena, G; Horsfall, LE; Gaines, L; Dai, Q; Jethwa, SJ; Lipson, AL; Leeke, GA; Cowell, T; Farthing, JG; Mariani, G; Smith, A; Iqbal, Z; Golmohammadzadeh, R; Sweeney, L; Goodship, V; Li, Z; Edge, J; Lander, L; Nguyen, VT; Elliot, RJR; Heidrich, O; Slattery, M; Reed, D; Ahuja, J; Cavoski, A; Lee, RB; Driscoll, E; Baker, J; Littlewood, P; Styles, I; Mahanty, S; Boons, F Roadmap for a sustainable circular economy in lithium-ion and future battery technologies(2023)Journal Of Physics-Energy, 5, 2
12326 Bhar, M; Ghosh, S; Krishnamurthy, S; Kaliprasad, Y; Martha, SK A review on spent lithium-ion battery recycling: from collection to black mass recovery(2023)Rsc Sustainability, 1.0, 5
16765 Roy, JJ; Rarotra, S; Krikstolaityte, V; Zhuoran, KW; Cindy, YDI; Tan, XY; Carboni, M; Meyer, D; Yan, QY; Srinivasan, M Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability(2022)Advanced Materials, 34, 25
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
30033 Prazanová, A; Plachy, Z; Koci, J; Fridrich, M; Knap, V Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation(2024)Batteries-Basel, 10.0, 3
32830 Marchese, D; Giosuè, C; Staffolani, A; Conti, M; Orcioni, S; Soavi, F; Cavalletti, M; Stipa, P An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries(2024)Batteries-Basel, 10, 1
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
Scroll