Knowledge Agora



Similar Articles

Title Reuse of electric vehicle batteries in buildings: An integrated load match analysis and life cycle assessment approach
ID_Doc 9042
Authors Cusenza, MA; Guarino, F; Longo, S; Mistretta, M; Cellura, M
Title Reuse of electric vehicle batteries in buildings: An integrated load match analysis and life cycle assessment approach
Year 2019
Published
Abstract The increasing use of renewable energy technologies for electricity generation in buildings will require a growing number of battery energy storage systems (BESS) to enhance the reliability of electricity supply. The increasing number of retired electric vehicle (EV) batteries, expected from the automotive sector, can match this demand as EV batteries can be used as BESS, considering that they have about 80% of their original energy capacity. In this context, the study aims at examining the system, consisting of a BESS made by retired Li-ion EV batteries, a photovoltaic plant (20 kW) and the electricity grid, that provides the electricity required by an existing nearly net zero residential building (25.000 kWh/year). The goal is to identify the optimal BESS size, expressed as energy capacity, for load match optimization and environmental impacts in a life cycle perspective. A BESS of around 46 kWh of energy capacity allows achieving significant results in terms of load match increase and environmental sustainability. The study includes an environmental assessment combining the load match analysis and the life cycle approach. It highlights the potential synergy inspired to the principles of the circular economy and of the industrial symbiosis, between the building and the automotive sector. (C) 2019 Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
15183 Bobba, S; Mathieux, F; Ardente, F; Blengini, GA; Cusenza, MA; Podias, A; Pfrang, A Life Cycle Assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows(2018)
4873 Cusenza, MA; Guarino, F; Longo, S; Ferraro, M; Cellura, M Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles(2019)
21474 Schulz-Mönninghoff, M; Bey, N; Norregaard, PU; Niero, M Integration of energy flow modelling in life cycle assessment of electric vehicle battery repurposing: Evaluation of multi-use cases and comparison of circular business models(2021)
26059 Casals, LC; Barbero, M; Corchero, C Reused second life batteries for aggregated demand response services(2019)
21199 Etxandi-Santolaya, M; Casals, LC; Montes, T; Corchero, C Are electric vehicle batteries being underused? A review of current practices and sources of circularity(2023)
28749 Song, AY; Zhou, YK Advanced cycling ageing-driven circular economy with E-mobility-based energy sharing and lithium battery cascade utilisation in a district community(2023)
4192 Thakur, J; Baskar, AG; de Almeida, CML Electric vehicle batteries for a circular economy: Second life batteries as residential stationary storage(2022)
64647 Oliveri, LM; D'Urso, D; Trapani, N; Chiacchio, F Electrifying Green Logistics: A Comparative Life Cycle Assessment of Electric and Internal Combustion Engine Vehicles(2023)Energies, 16, 23
64582 Paul, D; Pechancová, V; Saha, N; Pavelková, D; Saha, N; Motiei, M; Jamatia, T; Chaudhuri, M; Ivanichenko, A; Venher, M; Hrbácková, L; Sáha, P Life cycle assessment of lithium-based batteries: Review of sustainability dimensions(2024)
68788 Rallo, H; Casals, LC; De La Torre, D; Reinhardt, R; Marchante, C; Amante, B Lithium-ion battery 2nd life used as a stationary energy storage system: Ageing and economic analysis in two real cases(2020)
Scroll