Knowledge Agora



Similar Articles

Title Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles
ID_Doc 9187
Authors Xie, WC; Li, T; Tiraferri, A; Drioli, E; Figoli, A; Crittenden, JC; Liu, BC
Title Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles
Year 2021
Published Acs Sustainable Chemistry & Engineering, 9.0, 1
Abstract Large-scale membrane technology has been widely implemented and rapidly growing for roughly 40 years. However, considering its entire life cycle, there are aspects being characterized by low sustainability, and this industry certainly cannot be defined as green. In the membrane manufacturing process, raw materials mainly rely on nonbiodegradable petroleum-based polymers and hazardous solvents. These materials are thus associated with the energy crisis and with disposal burdens at the end of their lifetime, and they pose risks to workers and the environment. Therefore, biobased polymers and green solvents should be employed within the membrane preparation process and replace traditional ones. Moreover, the wastewater generated from membrane fabrication processes contains an important amount of organic solvents and should be efficiently treated or recycled before discharge. The application of artificial intelligence in membrane manufacturing and use processes can also improve efficiency significantly. Finally, a large number of spent membrane elements should also be reused and recovered, rather than landfilled. This review critically evaluates the recent advances in methods to improve the sustainability of membrane technology, specifically emphasizing the progresses made, with regard to the above aspects. This review thus analyzes the needs for membrane industry transformations in the light of circular economy.
PDF

Similar Articles

ID Score Article
19352 Khanzada, NK; Al-Juboori, RA; Khatri, M; Ahmed, FE; Ibrahim, Y; Hilal, N Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste(2024)Membranes, 14.0, 2
10246 Naeem, A; Saeed, B; Almohamadi, H; Lee, M; Gilani, MA; Nawaz, R; Khan, AL; Yasin, M Sustainable and green membranes for chemical separations: A review(2024)
7103 Goh, PS; Othman, MHD; Matsuura, T Waste Reutilization in Polymeric Membrane Fabrication: A New Direction in Membranes for Separation(2021)Membranes, 11, 10
4263 Lejarazu-Larrañaga, A; Landaburu-Aguirre, J; Senán-Salinas, J; Ortiz, JM; Molina, S Thin Film Composite Polyamide Reverse Osmosis Membrane Technology towards a Circular Economy(2022)Membranes, 12, 9
3593 Shehata, N; Egirani, D; Olabi, AG; Inayat, A; Abdelkareem, MA; Chae, KJ; Sayed, ET Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy(2023)
24286 Tian, CX; Chen, JSX; Bai, ZY; Wang, XY; Dai, RB; Wang, ZW Recycling of end-of-life polymeric membranes for water treatment: Closing the loop(2023)Journal Of Membrane Science Letters, 3, 2
29379 Castro-Muñoz, R; Barragán-Huerta, BE; Fíla, V; Denis, PC; Ruby-Figueroa, R Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds(2018)Waste And Biomass Valorization, 9.0, 4
6725 Chen, JSX; Dai, RB; Wang, ZW Closing the loop of membranes by recycling end-of-life membranes: Comparative life cycle assessment and economic analysis(2023)
14618 Ramírez-Martínez, M; Aristizábal, SL; Szekely, G; Nunes, SP Bio-based solvents for polyolefin dissolution and membrane fabrication: from plastic waste to value-added materials(2023)Green Chemistry, 25, 3
5157 Alkandari, SH; Ching, M; Lightfoot, JC; Berri, N; Leese, HS; Castro-Dominguez, B Recycling and 3D-Printing Biodegradable Membranes for Gas Separation-toward a Membrane Circular Economy(2024)Acs Applied Engineering Materials, 2, 6
Scroll