Knowledge Agora



Similar Articles

Title Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material
ID_Doc 9195
Authors Zhou, D; Wang, R; Tyrer, M; Wong, H; Cheeseman, AC
Title Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material
Year 2017
Published
Abstract Major infrastructure development projects in London produce large quantities of London clay and use significant volumes of concrete. Portland cement (CEM I) in concrete is normally partially replaced by supplementary cementitious materials such as ground granulated blastfurnace slag or pulverised fuel ash. The supply of supplementary cementitious materials is critical to the production of sustainable concrete. This study has investigated use of waste London clay as a supplementary cementitious material. The optimum calcined clay was produced at 900 degrees C and concrete made with 30 wt% of CEM I replaced by calcined clay had 28-day strengths greater than control samples. Compressive strengths of concrete containing calcined London clay were similar to concrete containing ground granulated blastfurnace slag and pulverised fuel ash. The production of calcined London clay emits similar to 70 kg CO2/tonne and this is 91% lower than CEM I. 30 wt% replacement of CEM I by calcined London clay therefore produces concrete with similar to 27% lower embodied carbon. London clay can be calcined to form a technically viable supplementary cementitious material and use of this in concrete would enable major civil infrastructure projects to contribute to a circular economy. (C) 2017 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
7561 Nicoara, AI; Stoica, AE; Vrabec, M; Rogan, NS; Sturm, S; Ow-Yang, C; Gulgun, MA; Bundur, ZB; Ciuca, I; Vasile, BS End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry(2020)Materials, 13, 8
12140 Moreno, S; Rosales, M; Rosales, J; Agrela, F; Díaz-López, JL Feasibility of Using New Sustainable Mineral Additions for the Manufacture of Eco-Cements(2024)Materials, 17.0, 4
6276 Juan-Valdés, A; Rodríguez-Robles, D; García-González, J; Gómez, MISD; Guerra-Romero, MI; De Belie, N; Morán-del Pozo, JM Mechanical and microstructural properties of recycled concretes mixed with ceramic recycled cement and secondary recycled aggregates. A viable option for future concrete(2021)
24823 Villagrán-Zaccardi, YA; Marsh, ATM; Sosa, ME; Zega, CJ; De Belie, N; Bernal, SA Complete re-utilization of waste concretes-Valorisation pathways and research needs(2022)
8334 Corbu, O; Puskas, A; Dragomir, ML; Har, N; Toma, IO Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM)(2023)Coatings, 13.0, 10
29203 Nwankwo, CO; Bamigboye, GO; Davies, IEE; Michaels, TA High volume Portland cement replacement: A review(2020)
21337 Caneda-Martínez, L; Monasterio, M; Moreno-Juez, J; Martínez-Ramírez, S; García, R; Frías, M Behaviour and Properties of Eco-Cement Pastes Elaborated with Recycled Concrete Powder from Construction and Demolition Wastes(2021)Materials, 14.0, 5
26877 Moreno-Juez, J; Vegas, IJ; Rojas, MF; de la Villa, RV; Guede-Vázquez, E Laboratory-scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements(2021)
20930 Al-Hamrani, A; Kucukvar, M; Alnahhal, W; Mahdi, E; Onat, NC Green Concrete for a Circular Economy: A Review on Sustainability, Durability, and Structural Properties(2021)Materials, 14, 2
25657 Malacarne, CS; Silva, MRCD; Danieli, S; Maciel, VG; Kirchheim, AP Environmental and technical assessment to support sustainable strategies for limestone calcined clay cement production in Brazil(2021)
Scroll