Knowledge Agora



Similar Articles

Title Ambient-Pressured Acid-Catalysed Ethylene Glycol Organosolv Process: Liquefaction Structure-Activity Relationships from Model Cellulose-Lignin Mixtures to Lignocellulosic Wood Biomass
ID_Doc 9246
Authors Jasiukaityte-Grojzdek, E; Vicente, FA; Grilc, M; Likozar, B
Title Ambient-Pressured Acid-Catalysed Ethylene Glycol Organosolv Process: Liquefaction Structure-Activity Relationships from Model Cellulose-Lignin Mixtures to Lignocellulosic Wood Biomass
Year 2021
Published Polymers, 13.0, 12
Abstract Raising the awareness of carbon dioxide emissions, climate global warming and fossil fuel depletion has renewed the transition towards a circular economy approach, starting by addressing active bio-economic precepts that all portion amounts of wood are valorised as products. This is accomplished by minimizing residues formed (preferably no waste materials), maximizing reaction productivity yields, and optimising catalysed chemical by-products. Within framework structure determination, the present work aims at drawing a parallel between the characterisation of cellulose-lignin mixture (derived system model) liquefaction and real conversion process in the acidified ethylene glycol at moderate process conditions, i.e., 150 degrees C, ambient atmospheric pressure and potential bio-based solvent, for 4 h. Extended-processing liquid phase is characterized considering catalyst-transformed reactant species being produced, mainly recovered lignin-based polymer, by quantitative 31P, 13C and 1H nuclear magnetic resonance (NMR) spectroscopy, as well as the size exclusion- (SEC) or high performance liquid chromatography (HPLC) separation for higher or lower molecular weight compound compositions, respectively. Such mechanistic pathway analytics help to understand the steps in mild organosolv biopolymer fractionation, which is one of the key industrial barriers preventing a more widespread manufacturing of the biomass-derived (hydroxyl, carbonyl or carboxyl) aromatic monomers or oligomers for polycarbonates, polyesters, polyamides, polyurethanes and (epoxy) resins.
PDF https://www.mdpi.com/2073-4360/13/12/1988/pdf?version=1624270745

Similar Articles

ID Score Article
12484 Broda, M; Yelle, DJ; Serwanska, K Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions(2022)Molecules, 27.0, 24
13852 Romaní, A; Del-Río, PG; Rubira, A; Pérez, MJ; Garrote, G Co-valorization of discarded wood pinchips and sludge from the pulp and paper industry for production of advanced biofuels(2024)
25207 Abouelela, AR; Hallett, JP Hazardous Creosote Wood Valorization via Fractionation and Enzymatic Saccharification Coupled with Simultaneous Extraction of the Embedded Polycyclic Aromatic Hydrocarbons Using Protic Ionic Liquid Media(2021)Acs Sustainable Chemistry & Engineering, 9, 2
14069 Girard, V; Chapuis, H; Brosse, N; Canilho, N; Marchal-Heussler, L; Ziegler-Devin, I Lignin Nanoparticles: Contribution of Biomass Types and Fractionation for an Eco-Friendly Production(2024)Acs Sustainable Chemistry & Engineering, 12, 18
14861 Gonzalez-Garcia, S; Gullón, B; Moreira, MT Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides(2018)
21761 Mujtaba, M; Fraceto, LF; Fazeli, M; Mukherjee, S; Savassa, SM; de Medeiros, GA; Pereira, ADS; Mancini, SD; Lipponen, J; Vilaplana, F Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics(2023)
2805 Eqbalpour, M; Andooz, A; Kowsari, E; Ramakrishna, S; Cheshmeh, ZA; Chinnappan, A A comprehensive review on how ionic liquids enhance the pyrolysis of cellulose, lignin, and lignocellulose toward a circular economy(2023)Wiley Interdisciplinary Reviews-Energy And Environment, 12, 4
20436 Dessie, W; Luo, XF; He, FL; Liao, YH; Qin, ZD Lignin valorization: A crucial step towards full utilization of biomass, zero waste and circular bioeconomy(2023)
9105 Guragain, YN; Vadlani, PV Renewable Biomass Utilization: A Way Forward to Establish Sustainable Chemical and Processing Industries(2021)Clean Technologies, 3.0, 1
24043 Cannatelli, MD; Ragauskas, AJ Laccase-mediated synthesis of lignin-core hyperbranched copolymers(2017)Applied Microbiology And Biotechnology, 101, 16
Scroll