Knowledge Agora



Similar Articles

Title Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese from Waste Lithium-Ion Batteries of Electric Vehicles
ID_Doc 9284
Authors Chan, KH; Anawati, J; Malik, M; Azimi, G
Title Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese from Waste Lithium-Ion Batteries of Electric Vehicles
Year 2021
Published Acs Sustainable Chemistry & Engineering, 9.0, 12
Abstract With the growing awareness to protect the urban environment and the increasing demand for strategic materials, recycling of postconsumer lithium-ion batteries has become imperative. This study aims to recover lithium, cobalt, nickel, and manganese from a LiNi0.15Mn0.15Co0.70O2 cathode material of spent lithium-ion batteries of an electric vehicle. By utilizing systematic experimental and theoretical approaches based on the design of experiment and response surface methodology, the best leachant between HCl and H2SO4 + H2O2 and the optimal operating conditions are determined. Leaching with 1.0 M H2SO4 mixed with 0.62 wt % H2O2 at a liquid-to-solid ratio of 25.8 mL g(-1) and a temperature of 51 degrees C for 60 min results in similar to 100% recovery of all four metals. After leaching, cobalt, nickel, and manganese are coprecipitated as Ni0.15Mn0.15Co0.70(OH)(2) at pH above 11, while lithium is precipitated as lithium carbonate. These precipitates are mixed and sintered to generate a new cathode material, which is used to make a battery with high electrochemical performance. Valorization of spent lithium-ion batteries from electric vehicles enables conserving natural resources and protecting ecosystems, both of which enable the long-term sustainability of the biosphere while at the same time contributing to the circular economy.
PDF

Similar Articles

ID Score Article
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
14824 Schwich, L; Schubert, T; Friedrich, B Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation(2021)Metals, 11, 2
21099 Aannir, M; Hakkou, R; Levard, C; Taha, Y; Ghennioui, A; Rose, J; Saadoune, I Towards a closed loop recycling process of end-of-life lithium-ion batteries: Recovery of critical metals and electrochemical performance evaluation of a regenerated LiCoO2(2023)
26363 El Mounafia, N; Aannir, M; Hakkou, R; Zaabout, A; Saadoune, I Comparative performance analysis of NMC cathodes elaborated from recovered and commercial raw materials: A low-temperature molten salt approach for extracting critical metals from end-of-life lithium-ion batteries(2023)
10397 Liu, JD; Mak, TY; Meng, Z; Wang, XY; Cao, YL; Lu, ZG; Suen, DWS; Lu, XY; Tang, YY Efficient recovery of lithium as Li2CO3 and cobalt as Co3O4 from spent lithium-ion batteries after leaching with p-toluene sulfonic acid(2023)
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
2282 dos Santos, MP; Garde, IAA; Ronchini, CMB; Cardozo, L; de Souza, GBM; Abbade, MLF; Regone, NN; Jegatheesan, V; de Oliveira, JA A technology for recycling lithium-ion batteries promoting the circular economy: The RecycLib(2021)
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
22876 Iturrondobeitia, M; Vallejo, C; Berroci, M; Akizu-Gardoki, O; Minguez, R; Lizundia, E Environmental Impact Assessment of LiNi1/3M1/3C1/3O2 Hydrometallurgical Cathode Recycling from Spent Lithium-Ion Batteries(2022)Acs Sustainable Chemistry & Engineering, 10.0, 30
25010 Park, S; Jung, S; Kwon, D; Beak, M; Kwon, EE; Kwon, K Carbothermic reduction of spent Lithium-Ion batteries using CO2 as reaction medium(2022)
Scroll