Knowledge Agora



Similar Articles

Title Role of Microbial Hydrolysis in Anaerobic Digestion
ID_Doc 9327
Authors Menzel, T; Neubauer, P; Junne, S
Title Role of Microbial Hydrolysis in Anaerobic Digestion
Year 2020
Published Energies, 13.0, 21
Abstract There is a growing need of substrate flexibility for biobased production of energy and value-added products that allows the application of variable biodegradable residues within a circular economy. It can be used to balance fluctuating energy provision of other renewable sources. Hydrolysis presents one of the biggest limitations during anaerobic digestion. Methods to improve it will result in broader process applicability and improved integration into regional material cycles. Recently, one focus of anaerobic digestion research has been directed to systems with a separate hydrolysis-acidogenesis stage as it might be promised to improve process performance. Conditions can be adjusted to each class of microorganisms individually without harming methanogenic microorganisms. Extensive research of separate biomass pretreatment via biological, chemical, physical or mixed methods has been conducted. Nevertheless, several methods lack economic efficiency, have a high environmental impact or focus on specific substrates. Pretreatment via a separate hydrolysis stage as cell-driven biotransformation in a suspension might be an alternative that enables high yields, flexible feeding and production, and a better process control. In this review, we summarize existing technologies for microbial hydrolytic biotransformation in a separate reactor stage and the impacts of substrate, operational parameters, combined methods and process design as well as remaining challenges.
PDF

Similar Articles

ID Score Article
24490 Das, A; Das, S; Das, N; Pandey, P; Ingti, B; Panchenko, V; Bolshev, V; Kovalev, A; Pandey, P Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials(2023)Agriculture-Basel, 13, 9
8416 Sganzerla, WG; Ampese, LC; Mussatto, SI; Forster-Carneiro, T Subcritical water pretreatment enhanced methane-rich biogas production from the anaerobic digestion of brewer's spent grains(2022)
3103 Leong, YK; Chang, JS Integrated role of algae in the closed-loop circular economy of anaerobic digestion(2022)
18761 Molina-Peñate, E; Artola, A; Sánchez, A Exploring biorefinery alternatives for biowaste valorization: a techno-economic assessment of enzymatic hydrolysis coupled with anaerobic digestion or solid-state fermentation for high-value bioproducts(2024)Bioengineered, 15.0, 1
12398 Archana, K; Visckram, AS; Kumar, PS; Manikandan, S; Saravanan, A; Natrayan, L A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals(2024)
12524 Mao, LW; Tsui, TH; Zhang, JX; Dai, YJ; Tong, YW System integration of hydrothermal liquefaction and anaerobic digestion for wet biomass valorization: Biodegradability and microbial syntrophy(2021)
10455 Sevillano, CA; Pesantes, AA; Carpio, EP; Martínez, EJ; Gómez, X Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario(2021)Entropy, 23, 2
11129 Seyedi, S; Venkiteshwaran, K; Zitomer, D Current status of biomethane production using aqueous liquid from pyrolysis and hydrothermal liquefaction of sewage sludge and similar biomass(2021)Reviews In Environmental Science And Bio-Technology, 20, 1
11074 Akaniro, IR; Zhao, J; Nyoyoko, VF; Onwosi, CO Free nitrous acid-assisted bioresource recovery from anaerobic digestion of organic materials(2024)Journal Of Environmental Chemical Engineering, 12, 3
22619 De Groof, V; Coma, M; Arnot, T; Leak, DJ; Lanham, AB Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation(2019)Molecules, 24.0, 3
Scroll