Knowledge Agora



Similar Articles

Title Anaerobic acidification of pressed sugar beet pulp for mcl-polyhydroxyalkanoates fermentation
ID_Doc 9468
Authors Kacanski, M; Knoll, L; Nussbaumer, M; Neureiter, M; Drosg, B
Title Anaerobic acidification of pressed sugar beet pulp for mcl-polyhydroxyalkanoates fermentation
Year 2023
Published
Abstract Anaerobic acidification of pressed sugar beet pulp (PSBP) is a promising strategy for the transition towards a circular economy. In this work, volatile fatty acids were produced by anaerobic acidification of PSBP and subsequently converted to mcl-polyhydroxyalkanoates. The results point to mesophilic acidification as superior to thermophilic one. At the same time, the pH regulated at the value of 6.0 showed a decisive advantage over both the pH of 7.0 and the lack of pH regulation. Furthermore, the conditions with a hydraulic retention time (HRT) of 10 days significantly outperformed those with an HRT of 6 days. The best-performing process (mesophilic, pH controlled at 6, HRT of 10 days) was successfully scaled up to a 250 L reactor, reaching a volatile fatty acid (VFA) concentration of up to 27.8 g L-1. Finally, the produced VFA were investigated as feedstock for mcl-PHA producers, Pseudomonas citronellolis and Pseudomonas putida. Both strains grew and produced PHA successfully, with P. citronellolis reaching a biomass of 15.6 g L-1 with 38% of mcl-PHA, while P. putida grew to 15.2 g L-1 with a polymer content of 31%. This study proves that acidified PSBP is a valuable feedstock for mcl-PHA production and an important approach to developing biorefineries.
PDF https://doi.org/10.1016/j.procbio.2023.06.019

Similar Articles

ID Score Article
9236 Kora, E; Tsaousis, PC; Andrikopoulos, KS; Chasapis, CT; Voyiatzis, GA; Ntaikou, I; Lyberatos, G Production efficiency and properties of poly (3hydroxybutyrate-co-3hydroxyvalerate) generated via a robust bacterial consortium dominated by Zoogloea sp. using acidified discarded fruit juices as carbon source(2023)
12527 Ramos-Suarez, M; Zhang, Y; Outram, V Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste(2021)Reviews In Environmental Science And Bio-Technology, 20.0, 2
24865 More, PP; Gore, S; Dargode, P; Sharma, MB; Lali, AM Volatile Fatty Acids (VFA) Production Through Altered Anaerobic Digestion (AD) Process for Efficient Utilization of Residual Liquid Stream of Pretreated Lignocellulosic Biomass(2022)Bioenergy Research, 15, 3
13273 Alexandri, M; Schneider, R; Papapostolou, H; Ladakis, D; Koutinas, A; Venus, J Restructuring the Conventional Sugar Beet Industry into a Novel Biorefinery: Fractionation and Bioconversion of Sugar Beet Pulp into Succinic Acid and Value-Added Coproducts(2019)Acs Sustainable Chemistry & Engineering, 7, 7
12889 Corchado-Lopo, C; Martínez-Avila, O; Marti, E; Llimós, J; Busquets, AM; Kucera, D; Obruca, S; Llenas, L; Ponsá, S Brewer's spent grain as a no-cost substrate for polyhydroxyalkanoates production: Assessment of pretreatment strategies and different bacterial strains(2021)
13275 Esteban-Gutiérrez, M; Garcia-Aguirre, J; Irizar, I; Aymerich, E From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling(2018)
9949 Olszewska-Widdrat, A; Xiros, C; Wallenius, A; Schneider, R; Pereira, LPRD; Venus, J Bioprocess optimization for lactic and succinic acid production from a pulp and paper industry side stream(2023)
13909 Zhang, WQ; Wang, SL; Yin, FB; Cao, QT; Lian, TJ; Zhang, HY; Zhu, ZP; Dong, HM Medium-chain carboxylates production from co-fermentation of swine manure and corn stalk silage via lactic acid: Without external electron donors(2022)
25801 Kora, E; Antonopoulou, G; Zhang, Y; Yan, Q; Lyberatos, G; Ntaikou, I Investigating the efficiency of a two-stage anaerobic-aerobic process for the treatment of confectionery industry wastewaters with simultaneous production of biohydrogen and polyhydroxyalkanoates.(2024)
25811 More, PP; Chavan, AA; Sharma, MB; Lali, AM Biobased volatile fatty acids (VFA) production via anaerobic acidogenesis of sugar processing industry effluent(2023)Environmental Technology, 44, 8
Scroll