Knowledge Agora



Similar Articles

Title Self-activation of Ferro-chemistry based advanced oxidation process towards in-situ recycling of spent LiFePO4 batteries
ID_Doc 9653
Authors Chen, XP; Yuan, L; Yan, SX; Ma, X
Title Self-activation of Ferro-chemistry based advanced oxidation process towards in-situ recycling of spent LiFePO4 batteries
Year 2023
Published
Abstract Increasing application of lithium iron phosphate (LiFePO4) battery in electric vehicles (EVs) and hybrid electric vehicles (HEVs) is boosting the generation of spent lithium iron phosphate batteries. Sustainable and costeffective recycling these batteries with less value-added metals is crucial for the fulfillment of circular economy society. Here, in-situ advanced oxidation metallurgy technology was innovatively proposed towards selective extraction of Li from LiFePO4 by Fenton oxidation, instead of conventional metallurgical processes. Li can be completely liberated without destructing olive type structure of LiFePO4 with the formation of FePO4 precursors. Mechanism revealed by DFT calculations and chemical reaction analysis indicates that the oxidation of Fe(II) in LiFePO4 and release of Li+ is mainly initiated by the rapid attack of a large number of & BULL;OH during advanced oxidation process. Liberated Li+ was recovered as Li2CO3 and used with FePO4 as precursors to refabricate LiFePO4. The recovered LiFePO4 shows sound electrochemical performances with initial discharge capacity of 138.9 mAh/g at 0.5C and capacity retention of 93.6% after 50 cycles. This study provides a green and efficient alternative for the selective recycling of Li from spent LiFePO4 battery based on its inherent structure and characteristics of target recycling materials with reduced chemical consumption, high efficiency and simplified recycling process.
PDF

Similar Articles

ID Score Article
10839 Chen, ZM; Shen, CQ; Liu, FP; Wang, JL Selective Separation and Recovery of Li from Spent LiFePO4 Cathode Materials by Oxidation Roasting Followed by Low-Acid Pressure Leaching(2023)Metals, 13, 11
10525 Liu, K; Wang, JX; Wang, MM; Zhang, QZ; Cao, Y; Huang, LB; Valix, M; Tsang, DCW Low-carbon recycling of spent lithium iron phosphate batteries via a hydro-oxygen repair route(2023)Green Chemistry, 25, 17
29579 Zhou, HX; Zhang, Y; Li, LQ; Cao, ZF Integrated recycling of valuable elements from spent LiFePO4 batteries: a green closed-loop process(2023)Green Chemistry, 25.0, 19
22475 Lan, J; Hou, HY; Yu, XH; Rong, J; Huang, BX Insights into the role of Li2FeP2O7 phase in LiFePO4/C composite cathode(2022)Ionics, 28.0, 11
17170 Yadav, P; Jie, CJ; Tan, S; Srinivasan, M Recycling of cathode from spent lithium iron phosphate batteries(2020)
21575 Li, DD; Hou, HY; Liu, XX; Yao, Y; Dai, ZP; Yu, CY The synchronous reutilization of the expired ferrous sulfate granules and waste Li foils for LiFePO4/C cathode(2018)International Journal Of Hydrogen Energy, 43.0, 49
26309 Vasconcelos, DD; Tenorio, JAS; Botelho, AB; Espinosa, DCR Circular Recycling Strategies for LFP Batteries: A Review Focusing on Hydrometallurgy Sustainable Processing(2023)Metals, 13, 3
21477 Hou, HY; Li, DD; Liu, XX; Yao, Y; Dai, ZP; Yu, CY Recovery of waste Li foils from spent experimental Li-anode coin cells for LiFePO4/C cathode(2018)
27817 Gucciardi, E; Galceran, M; Bustinza, A; Bekaert, E; Casas-Cabanas, M Sustainable paths to a circular economy: reusing aged Li-ion FePO4 cathodes within Na-ion cells(2021)Journal Of Physics-Materials, 4.0, 3
27087 Lan, J; Hou, HY; Huang, BX; Li, H; Li, JK The positive role of vitamin C in spindle-like LiFePO4/C cathode derived from two wastes(2022)Ionics, 28.0, 4
Scroll