Knowledge Agora



Similar Articles

Title Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects
ID_Doc 9661
Authors Tayou, LN; Lauri, R; Incocciati, E; Pietrangeli, B; Majone, M; Micolucci, F; Gottardo, M; Valentino, F
Title Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects
Year 2022
Published
Abstract The production of added-value bio-products and energy from waste streams while minimizing environmental impacts is a crucial aspect within the circular economy's principles. The biorefinery can be an exit to the constant increasing of organic food waste and sewage sludge to solve the issues of waste disposal. This work deals with the production of volatile fatty acids (VFA) as added-value products from food waste and sewage sludge mixture in a pilot scale acidogenic fermentation process. Moreover, due to the lack of information about safety aspects in the literature, the explosive risk of the fermenter has been assessed by means of the quantification of lower flammability limit (LFL) of the generated flammable gases. Different temperature and feedstock's composition were tested, as well as the effect of thermal hydrolysis. Mesophilic fermentation (37 degrees C) on thermally hydrolysed feedstock (48 h at 72 degrees C) ensured stability in terms of VFA production at high concentration (30 +/- 2 gCOD(VFA)/L) and CODVFA/CODSOL ratio (0.86 +/- 0.09). Such condition also showed high LFL (28.9%), corresponding to a less hazardous condition compared to the other investigated, especially the thermophilic ones where LFL changed between 18% and 26%. (C) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
13275 Esteban-Gutiérrez, M; Garcia-Aguirre, J; Irizar, I; Aymerich, E From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling(2018)
13219 Tampio, EA; Blasco, L; Vainio, MM; Kahala, MM; Rasi, SE Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes(2019)Global Change Biology Bioenergy, 11, 1
12527 Ramos-Suarez, M; Zhang, Y; Outram, V Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste(2021)Reviews In Environmental Science And Bio-Technology, 20.0, 2
18249 Sillero, L; Solera, R; Pérez, M Effect of the hydraulic retention time on the acidogenic fermentation of sewage sludge, wine vinasse and poultry manure for biohydrogen production(2022)
14673 Neri, A; Hummel, F; Benalia, S; Zimbalatti, G; Gabauer, W; Mihajlovic, I; Bernardi, B Use of Continuous Stirred Tank Reactors for Anaerobic Co-Digestion of Dairy and Meat Industry By-Products for Biogas Production(2024)Sustainability, 16, 11
25811 More, PP; Chavan, AA; Sharma, MB; Lali, AM Biobased volatile fatty acids (VFA) production via anaerobic acidogenesis of sugar processing industry effluent(2023)Environmental Technology, 44, 8
8622 Tian, L; Pan, L; Wang, L Effect of Inoculum Pretreatment and Substrate/Inoculum Ratio on Acidogenic Fermentation of Chemically Enhanced Primary Treatment Sludge(2024)Sustainability, 16.0, 8
29449 Valentino, F; Munarin, G; Biasiolo, M; Cavinato, C; Bolzonella, D; Pavan, P Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process(2021)Journal Of Environmental Chemical Engineering, 9.0, 5
12347 Duarte, MS; Fernandes, RJC; Pereira, C; Mesquita, DP; Alves, MM Influence of micro-aeration in the production of volatile fatty acids (VFA) from wastewaters with high salinity(2024)
15559 Moretto, G; Russo, I; Bolzonella, D; Pavan, P; Majone, M; Valentino, F An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas(2020)
Scroll