Knowledge Agora



Similar Articles

Title The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: A review
ID_Doc 9715
Authors Zhang, JX; Qu, YY; Qi, QX; Zhang, PS; Zhang, YB; Tong, YW; He, YL
Title The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: A review
Year 2020
Published
Abstract Zero-valent iron (ZVI) is known to be an additive in facilitating waste treatment and improving biogas production in anaerobic digestion (AD) systems. This review concentrates on the chemical cycle of iron as well as the function of the iron cycle in the removal of four kinds of pollutants: organic carbon, ni-trogen, sulphur and phosphorus, which are commonly encountered in waste treatment. In recent studies, the addition of ZVI to an AD system promoted the in-situ production of CH4 from CO2, enabling carbon capture through biotechnology. Additionally, using iron-carbon microbial electrolytic cells in AD systems in order to accelerate electron transport, as well as specific pollutant degradation mechanisms, are illustrated in the present study. Particularly, the main factors affecting the removal efficiency of contaminants in a ZVI-AD system such as pH, VFA/ Alkalinity (ALK), oxidation-reduction potential and particle size are reviewed. According to the above characteristics, combined with technical model and economic analyses, an AD system based on ZVI was considered to be an economical, efficient and carbon-neutral pollutant treatment technology. Accordingly, Iron-based AD is suggested to be a promising and sustainable approach orientated to a circular economy, which may be applied to many waste treatments fields. (c) 2020 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
13127 Wei, J; Hao, XD; van Loosdrecht, MCM; Li, J Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review(2018)
17465 Koleva, R; Peeva, G; Yemendzhiev, H; Nenov, V Potential Use of Microbial Fuel Cell Technology in Wastewater Treatment(2022)Processes, 10, 3
10455 Sevillano, CA; Pesantes, AA; Carpio, EP; Martínez, EJ; Gómez, X Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario(2021)Entropy, 23, 2
25076 Singh, PK; Mohanty, P; Mishra, S; Adhya, TK Food Waste Valorisation for Biogas-Based Bioenergy Production in Circular Bioeconomy: Opportunities, Challenges, and Future Developments(2022)
14107 Zielinski, M; Kazimierowicz, J; Debowski, M Advantages and Limitations of Anaerobic Wastewater Treatment-Technological Basics, Development Directions, and Technological Innovations(2023)Energies, 16, 1
33004 Menikea, KK; Kyprianou, A; Samanides, CG; Georgiou, SG; Koutsokeras, L; Constantinides, G; Vyrides, I Anaerobic granular sludge and zero valent scrap iron (ZVSI) pre-treated with green tea as a sustainable system for conversion of CO2 to CH4(2020)
28517 Ghimire, U; Sarpong, G; Gude, VG Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability(2021)Acs Omega, 6.0, 18
16732 Zbair, M; Limousy, L; Drané, M; Richard, C; Juge, M; Aemig, Q; Trably, E; Escudié, R; Peyrelasse, C; Bennici, S Integration of Digestate-Derived Biochar into the Anaerobic Digestion Process through Circular Economic and Environmental Approaches-A Review(2024)Materials, 17, 14
11051 Capson-Tojo, G; Rouez, M; Crest, M; Steyer, JP; Delgenès, JP; Escudié, R Food waste valorization via anaerobic processes: a review(2016)Reviews In Environmental Science And Bio-Technology, 15, 3
22484 Macerak, AL; Mandic, AK; Pesic, V; Pilipovic, DT; Becelic-Tomin, M; Kerkez, D Green nZVI-Biochar as Fenton Catalyst: Perspective of Closing-the-Loop in Wastewater Treatment(2023)Molecules, 28.0, 3
Scroll