Knowledge Agora



Similar Articles

Title Bridging the Gap between Biowaste and Biomethane Production: A Systematic Review Meta-Analysis Methodological Approach
ID_Doc 9768
Authors Toufexis, C; Makris, DO; Vlachokostas, C; Michailidou, AV; Mertzanakis, C; Vachtsiavanou, A
Title Bridging the Gap between Biowaste and Biomethane Production: A Systematic Review Meta-Analysis Methodological Approach
Year 2024
Published Sustainability, 16.0, 15
Abstract Anaerobic digestion (AD) is a promising biowaste valorization technology for sustainable energy, circular economy, local energy community growth, and supporting local authorities' environmental goals. This paper presents a systematic review meta-analysis methodology for biomethane estimation, using over 600 values of volatile solids (VS) content and biochemical methane potential (BMP) of six different waste streams, collected from 240 scientific studies. The waste streams include cow manure (CM), sheep/goat manure (SGM), wheat straw (WS), household waste (HW), organic fraction of municipal solid waste (OFMSW), and sewage sludge (SS). The statistical analysis showed a mean VS content of 11.9% (CM), 37.3% (SGM), 83.1% (WS), 20.8% (HW), 19.4% (OFMSW), and 10.6% (SS), with BMP values of 204.6, 184.1, 305.1, 361.7, 308.3, and 273.1 L CH4/kg VS, respectively. The case study of Kozani, Greece, demonstrated the methodology's applicability, revealing a potential annual CH4 production of 15,429,102 m3 (corresponding to 551 TJ of energy), with SGM, WS, and CM as key substrates. Kozani, aiming for climate neutrality by 2030, currently employs conventional waste management, like composting, while many local business residual streams remain unused. The proposed model facilitates the design and implementation of AD units for a sustainable, climate-neutral future.
PDF https://www.mdpi.com/2071-1050/16/15/6433/pdf?version=1722239730

Similar Articles

ID Score Article
13883 Anacleto, TM; Oliveira, HR; Diniz, VL; de Oliveira, VP; Abreu, F; Enrich-Prast, A Boosting manure biogas production with the application of pretreatments: A meta-analysis(2022)
16896 Mignogna, D; Ceci, P; Cafaro, C; Corazzi, G; Avino, P Production of Biogas and Biomethane as Renewable Energy Sources: A Review(2023)Applied Sciences-Basel, 13, 18
9411 de la Cruz-azuara, JE; Ruiz-Marin, A; Canedo-Lopez, Y; Aguilar-Ucan, CA; Ceron-Breton, RM; Ceron-Breton, JG; Anguebes-Franseschi, F Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge(2024)Energies, 17.0, 12
10690 Pacheco, LA; Tamayo-Peña, J; Moraes, BD; Franco, TT Bioenergy, Electricity, Biogas Production, and Emission Reduction Using the Anaerobic Digestion of Organic Municipal Solid Waste in Campinas, One of the Largest Brazilian Cities(2022)Processes, 10, 12
9304 Dhull, P; Lohchab, RK; Kumar, S; Kumari, M; Shaloo; Bhankhar, AK Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy(2024)Bioenergy Research, 17.0, 2
3603 Dhungana, B; Lohani, SP; Marsolek, M Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals(2022)Sustainability, 14, 6
16570 Ellacuriaga, M; García-Cascallana, J; Gómez, X Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy(2021)Fuels, 2, 2
13245 Seruga, P; Krzywonos, M; Seruga, A; Niedzwiecki, L; Pawlak-Kruczek, H; Urbanowska, A Anaerobic Digestion Performance: Separate Collected vs. Mechanical Segregated Organic Fractions of Municipal Solid Waste as Feedstock(2020)Energies, 13, 15
25076 Singh, PK; Mohanty, P; Mishra, S; Adhya, TK Food Waste Valorisation for Biogas-Based Bioenergy Production in Circular Bioeconomy: Opportunities, Challenges, and Future Developments(2022)
8911 Silva, J; Fragoso, R Enhanced Biomethanation: The Impact of Incorporating Fish Waste on the Co-Digestion of Pig Slurry and Orange Pomace(2023)Energies, 16.0, 16
Scroll