Knowledge Agora



Similar Articles

Title Biochar in environmental friendly fertilizers-Prospects of development products and technologies
ID_Doc 9794
Authors Samoraj, M; Mironiuk, M; Witek-Krowiak, A; Izydorczyk, G; Skrzypczak, D; Mikula, K; Basladynska, S; Moustakas, K; Chojnacka, K
Title Biochar in environmental friendly fertilizers-Prospects of development products and technologies
Year 2022
Published
Abstract According to the circular economy concept, the production of fertilizers should be closed in a loop, which prevents excessive emissions and harmful effects to the environment. Biological wastes are problematic to collect and transport. They undergo a biological transformation that causes greenhouse gases emission and sanitary hazards. Biomass sources used for organic or organo-mineral fertilizers must be free of pathogens and rich in macro and microelements. Solid residues can be processed thermally. Biochar is a carbon produced by biomass pyrolysis without oxygen presence and has been used for many years to improve soil quality and enhance the efficiency of fertilization. There are many research works on the use of biochar in fertilization. This study is also extended by the latest developments and technologies from the patent database (recent year) and biochar-based fertilizers market. To the best of our knowledge, there is no such review currently available in scientific databases. Based on the collected data, the best method of biochar management was proposed - soil application. Biochar applied to soil has several advantages: it improves soil structure and its sorption capacity, enhances soilnutrient retention and water-holding capacity, immobilizes contaminants from soil (sorption), reduces greenhouse gas emissions and soil nutrient leaching losses while stimulating the growth of a plant.
PDF

Similar Articles

ID Score Article
19965 Enaime, G; Lübken, M Agricultural Waste-Based Biochar for Agronomic Applications(2021)Applied Sciences-Basel, 11.0, 19
24742 Rombel, A; Krasucka, P; Oleszczuk, P Sustainable biochar-based soil fertilizers and amendments as a new trend in biochar research(2022)
4534 Hu, Q; Jung, J; Chen, DX; Leong, K; Song, S; Li, FH; Mohan, BC; Yao, ZY; Prabhakar, AK; Lin, XH; Lim, EY; Zhang, L; Souradeep, G; Ok, YS; Kua, HW; Li, SFY; Tan, HTW; Dai, YJ; Tong, YW; Peng, YH; Joseph, S; Wang, CH Biochar industry to circular economy(2021)
16338 Jindo, K; Sánchez-Monedero, MA; Mastrolonardo, G; Audette, Y; Higashikawa, FS; Silva, CA; Akashi, K; Mondini, C Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment(2020)Chemical And Biological Technologies In Agriculture, 7, 1
20225 Marcinczyk, M; Ok, YS; Oleszczuk, P From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars(2022)
15693 Bis, Z; Kobylecki, R; Scislowska, M; Zarzycki, R Biochar - Potential tool to combat climate change and drought(2018)Ecohydrology & Hydrobiology, 18, 4
6926 Li, SM; Chan, CY; Sharbatmaleki, M; Trejo, H; Delagah, S Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System(2020)Water, 12, 10
14394 Copetta, A; Arimondo, O; Pittaluga, F; Mascarello, C; Mussano, P; Ruffoni, B Characterization of biochar produced from pruning residues of different species for use in vegetable and flower production(2023)
10170 Zhang, YH; Qin, JD; Yi, YL Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications(2021)
9313 Osman, AI; Fawzy, S; Farghali, M; El-Azazy, M; Elgarahy, AM; Fahim, RA; Maksoud, MIAA; Ajlan, AA; Yousry, M; Saleem, Y; Rooney, DW Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review(2022)Environmental Chemistry Letters, 20.0, 4
Scroll