Knowledge Agora



Similar Articles

Title Rice Husk, Brewer's Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production
ID_Doc 9851
Authors Guimaraes, A; Mota, AC; Pereira, AS; Fernandes, AM; Lopes, M; Belo, I
Title Rice Husk, Brewer's Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production
Year 2024
Published Materials, 17.0, 4
Abstract Solid by-products with lignocellulosic structures are considered appropriate substrates for solid-state fermentation (SSF) to produce enzymes with diverse industrial applications. In this work, brewer's spent grain (BSG), rice husk (RH), and vine shoot trimmings (VSTs) were employed as substrates in SSF with Aspergillus niger CECT 2088 to produce cellulases, xylanases, and amylases. The addition of 2% (NH4)2SO4 and 1% K2HPO4 to by-products had a positive effect on enzyme production. Substrate particle size influenced enzyme activity and the overall highest activities were achieved at the largest particle size (10 mm) of BSG and RH and a size of 4 mm for VSTs. Optimal substrate composition was predicted using a simplex centroid mixture design. The highest activities were obtained using 100% BSG for beta-glucosidase (363 U/g) and endo-1,4-beta-glucanase (189 U/g), 87% BSG and 13% RH for xylanase (627 U/g), and 72% BSG and 28% RH for amylase (263 U/g). Besides the optimal values found, mixtures of BSG with RH or VSTs proved to be alternative substrates to BSG alone. These findings demonstrate that SSF bioprocessing of BSG individually or in mixtures with RH and VSTs is an efficient and sustainable strategy to produce enzymes of significant industrial interest within the circular economy guidelines.
PDF https://www.mdpi.com/1996-1944/17/4/935/pdf?version=1708505318

Similar Articles

ID Score Article
13807 Teigiserova, DA; Bourgine, J; Thomsen, M Closing the loop of cereal waste and residues with sustainable technologies: An overview of enzyme production via fungal solid-state fermentation(2021)
7545 Yang, WQ; Su, YW; Wang, RB; Zhang, HY; Jing, HY; Meng, J; Zhang, GQ; Huang, LQ; Guo, LP; Wang, J; Gao, WY Microbial production and applications of β-glucosidase-A review(2024)
18521 Knesebeck, M; Schäfer, D; Schmitz, K; Rüllke, M; Benz, JP; Weuster-Botz, D Enzymatic One-Pot Hydrolysis of Extracted Sugar Beet Press Pulp after Solid-State Fermentation with an Engineered Aspergillus niger Strain(2023)Fermentation-Basel, 9.0, 7
20716 Taddia, A; Brandaleze, GN; Boggione, MJ; Bortolato, SA; Tubio, G An integrated approach to the sustainable production of xylanolytic enzymes fromAspergillus nigerusing agro-industrial by-products(2020)Preparative Biochemistry & Biotechnology, 50, 10
13360 Mihajlovski, K; Buntic, A; Milic, M; Rajilic-Stojanovic, M; Dimitrijevic-Brankovic, S From Agricultural Waste to Biofuel: Enzymatic Potential of a Bacterial Isolate Streptomyces fulvissimus CKS7 for Bioethanol Production(2021)Waste And Biomass Valorization, 12, 1
20517 Astolfi, V; Astolfi, AL; Mazutti, MA; Rigo, E; Di Luccio, M; Camargo, AF; Dalastra, C; Kubeneck, S; Fongaro, G; Treichel, H Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach(2019)Bioprocess And Biosystems Engineering, 42, 5
24842 Singh, G; Samuchiwal, S; Hariprasad, P; Sharma, S Melioration of Paddy Straw to produce cellulase-free xylanase and bioactives under Solid State Fermentation and deciphering its impact by Life Cycle Assessment(2022)
12802 Caroca, E; Elorrieta, M; Palma, C; Navia, D; Lebrero, R; Carvajal, A Lignocellulosic residue valorization in a sequential process of solid-state fermentation and solid substrate anaerobic digestion(2022)Journal Of Chemical Technology And Biotechnology, 97.0, 6
24653 Sosa-Martínez, JD; Morales-Oyervides, L; Montañez, J; Contreras-Esquivel, JC; Balagurusamy, N; Gadi, SK; Salmerón, I Sustainable Co-Production of Xylanase, Cellulase, and Pectinase through Agroindustrial Residue Valorization Using Solid-State Fermentation: A Techno-Economic Assessment(2024)Sustainability, 16, 4
19860 Mittermeier, F; Fischer, F; Hauke, S; Hirschmann, P; Weuster-Botz, D Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed(2024)Biotech, 13.0, 2
Scroll