8026
|
|
Abbas, MI; Amelia, TSM; Bhubalan, K; Vigneswari, S; Ramakrishna, S; Amirul, AAA Bioprospecting waste for polyhydroxyalkanoates production: embracing low carbon bioeconomy(2024) |
20576
|
|
Zhou, W; Bergsma, S; Colpa, DI; Euverink, GJW; Krooneman, J Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy(2023) |
7854
|
|
Ma, R; Li, J; Tyagi, R; Zhang, XL Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation(2024) |
8342
|
|
Madadi, R; Maljaee, H; Serafim, LS; Ventura, SPM Microalgae as Contributors to Produce Biopolymers(2021)Marine Drugs, 19.0, 8 |
12294
|
|
Mukherjee, A; Koller, M Microbial PolyHydroxyAlkanoate (PHA) Biopolymers-Intrinsically Natural(2023)Bioengineering-Basel, 10.0, 7 |
13152
|
|
Ahuja, V; Singh, PK; Mahata, C; Jeon, JM; Kumar, G; Yang, YH; Bhatia, SK A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater(2024)Microbial Cell Factories, 23, 1 |
9197
|
|
González-Rojo, S; Paniagua-García, AI; Díez-Antolínez, R Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production(2024)Microorganisms, 12.0, 8 |
4565
|
|
Sangiorgio, P; Verardi, A; Dimatteo, S; Spagnoletta, A; Moliterni, S; Errico, S Tenebrio molitorin the circular economy: a novel approach for plastic valorisation and PHA biological recovery(2021)Environmental Science And Pollution Research, 28, 38 |
23701
|
|
Adeleye, AT; Odoh, CK; Enudi, OC; Banjoko, OO; Osiboye, OO; Odediran, ET; Louis, H Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass(2020) |
7729
|
|
Koller, M; Mukherjee, A Polyhydroxyalkanoates - Linking Properties, Applications, and End-of-life Options(2020)Chemical And Biochemical Engineering Quarterly, 34, 3 |