Knowledge Agora



Similar Articles

Title Electrochemical reduction of CO2 on a CoTPP/MWCNT composite: Investigation of operation parameters influence on CH3OH production by differential electrochemical mass spectrometry (DEMS)
ID_Doc 9892
Authors Hossain, MN; Suominen, M; Kallio, T
Title Electrochemical reduction of CO2 on a CoTPP/MWCNT composite: Investigation of operation parameters influence on CH3OH production by differential electrochemical mass spectrometry (DEMS)
Year 2024
Published
Abstract Renewable electricity-driven electrochemical production of small organic molecules, such as CH3OH, from chemical industry waste CO2 feedstock is highly desirable for circular economy. These reactions proceed via multiple intermediate steps which causes high overpotential and poor selectivity imposing a challenge for designing techno-economically viable systems. Proper understanding of the reaction mechanism is essential to overcome those challenges. Herein, we present a simple qualitative analysis to understand the reaction mechanism during electrochemical reduction of CO2 (eCO2R) on a cobalt tetraphenylporphyrin / multiwalled carbon nanotube (CoTPP/MWCNT) composite in the temperature range of 20-50 degrees C by employing differential electrochemical mass spectrometry (DEMS) in 0.1 M and 0.5 M KHCO3 electrolytes. Interestingly, temperature is observed to strongly affect the onset potentials for product generation in such a way that with the increase of temperature from 20 degrees C to 50 degrees C a decrease in the onset potential specifically for methanol formation is observed. Moreover, formaldehyde (HCHO) formation appears to occur at lower overpotentials before the formation of CH3OH which suggests that on the composite electrocatalyst, HCHO is an important intermediate on a route to CH3OH. This work offers valuable information on reaction routes to CH3OH and temperature effects on the eCO2R selectivity on molecular catalysts.
PDF

Similar Articles

ID Score Article
10332 Zhong, X; Peng, HJ; Xia, C; Liu, XY Recent advances in upgrading CO2 to C3+ products via electrochemical and complementary engineering(2024)Journal Of Materials Chemistry A, 12, 31
8479 Ruiz-López, E; Gandara-Loe, J; Baena-Moreno, F; Reina, TR; Odriozola, JA Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects(2022)
14885 Cuellar, NSR; Wiesner-Fleischer, K; Fleischer, M; Rucki, A; Hinrichsen, O Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities(2019)
Scroll