Knowledge Agora



Similar Articles

Title Dechlorination during pyrolysis of plastics: The potential of stepwise pyrolysis in combination with metal sorbents
ID_Doc 9921
Authors Hubacek, J; Lederer, J; Kuran, P; Koutnik, P; Gholami, Z; Zbuzek, M; Baciak, M
Title Dechlorination during pyrolysis of plastics: The potential of stepwise pyrolysis in combination with metal sorbents
Year 2022
Published
Abstract Pyrolysis liquid is a valuable product that could be re-introduced into the refinery or petrochemical industry following circular economy principles. However, halogens in the liquid product hinder this approach by causing corrosion of subsequent technologies. Dehalogenation is, therefore, a necessary step that aims to reduce halogen content below the set limit of 10 ppm. Research on this topic often includes contradictory results, and dehalogenation is still not widely used in large-scale operations. The present study explores the possibility of chlorine removal from a model plastic mixture, including 10% PVC utilizing various pyrolysis conditions, stepwise pyrolysis, and sorbents based on Ca(OH)(2), Fe3O4, and Fe. Results suggest that it is not suitable to use sorbents in situ as the captured Cl in the form of chlorides was released at higher temperatures increasing the chlorine content in the liquid products. The limit of 10 ppm for refinery introduction was reached by combining stepwise pyrolysis and sorbents ex-situ. Fe(3)O4 displayed the best efficiency, while its reduced form was the most efficient considering its low surface area. The obtained results are a necessary preliminary step for the development of a reliable dehalogenation procedure for municipal plastic waste being underway.
PDF

Similar Articles

ID Score Article
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
9689 Lindfors, C; Khan, M; Siddiq, F; Arnold, M; Ohra-aho, T Catalytic Processing of Mixed Plastics Aiming for Industrial Reuse(2024)Energy & Fuels, 38.0, 9
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
12451 Zolghadr, A; Kulas, D; Shonnard, D Evaluation of Pyrolysis Wax as a Solvent in Polyolefin Pyrolysis Processing(2022)
14052 Pereira, L; Castillo, V; Calero, M; Blázquez, G; Solís, RR; Martín-Lara, MA Conversion of char from pyrolysis of plastic wastes into alternative activated carbons for heavy metal removal(2024)
13476 Chang, SH Plastic waste as pyrolysis feedstock for plastic oil production: A review(2023)
24647 Qureshi, MS; Oasmaa, A; Pihkola, H; Deviatkin, I; Tenhunen, A; Mannila, J; Minkkinen, H; Pohjakallio, M; Laine-Ylijoki, J Pyrolysis of plastic waste: Opportunities and challenges(2020)
10292 Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review(2021)Energy & Fuels, 35, 16
14484 Nabgan, W; Ikram, M; Alhassan, M; Owgi, AHK; Tran, TV; Parashuram, L; Nordin, AH; Djellabi, R; Jalil, AA; Medina, F; Nordin, ML Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste(2023)Arabian Journal Of Chemistry, 16, 6
15429 Sophonrat, N; Sandström, L; Zaini, IN; Yang, WH Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates(2018)
Scroll