Knowledge Agora



Similar Articles

Title Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review
ID_Doc 9950
Authors Ghalkhani, M; Teymourinia, H; Ebrahimi, F; Irannejad, N; Karimi-Maleh, H; Karaman, C; Karimi, F; Dragoi, EN; Lichtfouse, E; Singh, J
Title Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review
Year 2023
Published
Abstract Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environ-mental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is, therefore, a need for methods to recycle waste into valuable materials through the resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable yet inexpensive catalysts. In this case, growing attention has been paid to the development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) intro-duce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give a comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
PDF

Similar Articles

ID Score Article
10824 Brar, KK; Magdouli, S; Othmani, A; Ghanei, J; Narisetty, V; Sindhu, R; Binod, P; Pugazhendhi, A; Awasthi, MK; Pandey, A Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review(2022)
5604 Omran, BA; Baek, KH Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles(2022)
24555 Patel, S; Marzbali, MH; Hakeem, IG; Veluswamy, G; Rathnayake, N; Nahar, K; Agnihotri, S; Bergmann, D; Surapaneni, A; Gupta, R; Sharma, A; Shah, KL Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption(2023)
8179 Pérez, H; García, OJQ; Allieri, MAA; Vázquez, RR Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview(2023)Water Science And Technology, 87.0, 12
24840 Hernández-Saravia, LP; Carmona, ER; Villacorta, A; Carevic, FS; Marcos, R Sustainable use of mining and electronic waste for nanomaterial synthesis with technological applications: state of the art and future directions(2023)Green Chemistry Letters And Reviews, 16, 1
21902 Sravan, JS; Matsakas, L; Sarkar, O Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context(2024)Bioengineering-Basel, 11.0, 3
6896 Puyol, D; Batstone, D; Hülsen, T; Astals, S; Peces, M; Krömer, JO Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects(2017)
Scroll