Knowledge Agora



Similar Articles

Title What to Do with Toxic, Contaminated Cellulose-based Adsorbents
ID_Doc 9959
Authors Hubbe, MA
Title What to Do with Toxic, Contaminated Cellulose-based Adsorbents
Year 2022
Published Bioresources, 17.0, 1
Abstract This editorial considers the end fates of toxic materials, such as heavy metals, dyes, and synthetic organic compounds, which can be recovered from polluted water by using bio-based adsorbents. The point of the editorial is that insufficient research attention has been paid to the final fate of such contaminants. By contrast, much is known regarding factors affecting the adsorption capacities and rates of adsorption onto cellulose based materials. Highly contaminated solutions are produced during the regeneration of biosorbent materials. Eutectic freeze crystallization potentially could be used to isolate relative pure compounds of heavy metals from such solutions. Alternatively, biochar can be prepared from cellulosic material in such a way as to achieve strong attachment to certain pollutants. Such biochar, after its use as an adsorbent, could be placed in the ground, where it can be expected to remain stable as sequestered carbon. A high ion exchange capacity of such biochar has potential to reduce the rates of leaching, which could otherwise lead to contamination of groundwater near to landfill sites. As shown by these examples, some promising answers to the final fate of contaminants may conform to a "circular economy" model, whereas other promising answers may conform to a "cradle-to-grave" viewpoint.
PDF

Similar Articles

ID Score Article
13435 Fdez-Sanromán, A; Pazos, M; Rosales, E; Sanromán, MA Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review(2020)Applied Sciences-Basel, 10, 21
25776 Karic, N; Maia, AS; Teodorovic, A; Atanasova, N; Langergraber, G; Crini, G; Ribeiro, ARL; Dolic, M Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment(2022)
14121 Osman, AI; Abd El-Monaem, EM; Elgarahy, AM; Aniagor, CO; Hosny, M; Farghali, M; Rashad, E; Ejimofor, MI; López-Maldonado, EA; Ihara, I; Yap, PS; Rooney, DW; Eltaweil, AS Methods to prepare biosorbents and magnetic sorbents for water treatment: a review(2023)Environmental Chemistry Letters, 21, 4
10026 Baran, A; Tack, FMG; Delemazure, A; Wieczorek, J; Boguta, P; Skic, K Use of selected amendments for reducing metal mobility and ecotoxicity in contaminated bottom sediments(2024)
28814 Pap, S; Boyd, KG; Taggart, MA; Sekulic, MT Circular economy based landfill leachate treatment with sulphur-doped microporous biochar(2021)
21118 Viotti, P; Marzeddu, S; Antonucci, A; Decima, MA; Lovascio, P; Tatti, F; Boni, MR Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review(2024)Materials, 17.0, 4
27481 Krasucka, P; Pan, B; Ok, YS; Mohan, D; Sarkar, B; Oleszczuk, P Engineered biochar - A sustainable solution for the removal of antibiotics from water(2021)
8576 Farghal, HH; Nebsen, M; El-Sayed, MMH Exploitation of expired cellulose biopolymers as hydrochars for capturing emerging contaminants from water(2023)Rsc Advances, 13.0, 29
9298 Liu, YJ; Biswas, B; Hassan, M; Naidu, R Green Adsorbents for Environmental Remediation: Synthesis Methods, Ecotoxicity, and Reusability Prospects(2024)Processes, 12.0, 6
13509 Mayilswamy, N; Nighojkar, A; Edirisinghe, M; Sundaram, S; Kandasubramanian, B Sludge-derived biochar: Physicochemical characteristics for environmental remediation(2023)Applied Physics Reviews, 10, 3
Scroll