Knowledge Agora



Scientific Article details

Title Thermoplastic Electromagnetic Shielding Materials from the Integral Recycling of Waste from Electronic Equipment
ID_Doc 10869
Authors Aradoaei, M; Ciobanu, RC; Schreiner, C; Ursan, AG; Hitruc, EG; Aflori, M
Title Thermoplastic Electromagnetic Shielding Materials from the Integral Recycling of Waste from Electronic Equipment
Year 2023
Published Polymers, 15, 19
DOI 10.3390/polym15193859
Abstract The European Green Deal's goals are anticipated to be fulfilled in large part thanks to the New Circular Economy Action Plan. It is believed that recycling materials will have a significant positive impact on the environment, particularly in terms of reducing greenhouse gas emissions and the impacts this will have on preventing climate change. Due to the complexity of the issue and its significant practical ramifications, the activity of Waste Electrical and Electronic Equipment (WEEE) collection networks is a subject of interest for researchers and managers, in accordance with the principles that recent laws have addressed in a large number of industrialized countries. The goal of this paper is to characterize and obtain composite materials using an injection process with a matrix of LDPE, PP, and HDPE, with up to a 10% addition of nonmetallic powders from PCBs and electronic parts from an integrated process of WEEE recycling. The composites present relevant thermal, electrical, and mechanical properties. Such composite materials, due to their relevant dielectric properties, may be further tested for applications in electromagnetic shielding at frequencies above 1 kHz, or for electromagnetic interference/electromagnetic compatibility (EMI/EMC and ESD) applications at lower frequencies due to their superior dielectric loss factor values, associated with relevant behaviors around exploitation temperatures, mainly for the electric, electronic, or automotive industries.
Author Keywords integral recycling of WEEE; thermoplastic composites; electromagnetic interference; electromagnetic compatibility
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:001083084200001
WoS Category Polymer Science
Research Area Polymer Science
PDF https://www.mdpi.com/2073-4360/15/19/3859/pdf?version=1695554444
Similar atricles
Scroll