Knowledge Agora



Scientific Article details

Title Struvite-Driven Integration for Enhanced Nutrient Recovery from Chicken Manure Digestate
ID_Doc 11034
Authors Mousavi, SE; Goyette, B; Zhao, X; Couture, C; Talbot, G; Rajagopal, R
Title Struvite-Driven Integration for Enhanced Nutrient Recovery from Chicken Manure Digestate
Year 2024
Published Bioengineering-Basel, 11, 2
DOI 10.3390/bioengineering11020145
Abstract This study investigated the synergistic integration of clean technologies, specifically anaerobic digestion (AD) and struvite precipitation, to enhance nutrient recovery from chicken manure (CM). The batch experiments were conducted using (i) anaerobically digested CM digestate, referred to as raw sample (RS), (ii) filtered digestate sample (FS), and (iii) a synthetically prepared control sample (CS). The research findings demonstrated that the initial ammonia concentration variations did not significantly impact the struvite precipitation yield in the RS and FS, showcasing the materials inertness process's robustness to changing ammonia concentrations. Notably, the study revealed that the highest nitrogen (N) recovery, associated with 86% and 88% ammonia removal in the CS and FS, was achieved at pH 11, underscoring the efficiency of nutrient recovery. The RS achieved the highest nitrogen recovery efficiency at pH 10, at 86.3%. In addition, the research highlighted the positive impact of reducing heavy metal levels (Zn, Cu, Pb, Ni, Cd, Cr and Fe) and improving the composition of the microbial community in the digestate. These findings offer valuable insights into sustainable manure and nutrient management practices, emphasizing the potential benefits for the agricultural sector and the broader circular economy. Future research directions include economic viability assessments, regulatory compliance evaluations, and knowledge dissemination to promote the widespread adoption of these clean technologies on a larger scale. The study marks a significant step toward addressing the environmental concerns associated with poultry farming and underscores the potential of integrating clean technologies for a more sustainable agricultural future.
Author Keywords ammonia inhibition; chicken manure digestate; heavy metal removal; nutrients recovery; struvite production
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:001170122300001
WoS Category Biotechnology & Applied Microbiology; Engineering, Biomedical
Research Area Biotechnology & Applied Microbiology; Engineering
PDF https://www.mdpi.com/2306-5354/11/2/145/pdf?version=1706697558
Similar atricles
Scroll