Title |
Graphene Oxide from Graphite of Spent Batteries as Support of Nanocatalysts for Fuel Hydrogen Production |
ID_Doc |
12440 |
Authors |
Sperandio, G; Machado, I Jr; Bernardo, E; Moreira, R |
Title |
Graphene Oxide from Graphite of Spent Batteries as Support of Nanocatalysts for Fuel Hydrogen Production |
Year |
2023 |
Published |
Processes, 11.0, 11 |
DOI |
10.3390/pr11113250 |
Abstract |
The increasing production of electronic waste and the rising demand for renewable energy are currently subjects of debate. Sustainable processes based on a circular economy are required. Then, electronic devices could be the main source for the synthesis of new materials. Thus, this work aimed to synthesize graphene oxide (GO) from graphite rod of spent Zn-C batteries. This was used as support for Ni/Co bimetallic nanocatalysts in the evolution of hydrogen from NaBH4 for the first time. The graphene oxide (GO) exhibited a diffraction peak at 2 theta = 9.1 degrees, as observed using X-ray diffraction (XRD), along with the presence of oxygenated groups as identified using FTIR. Characteristic bands at 1345 and 1574 cm-1 were observed using Raman spectroscopy. A leaf-shaped morphology was observed using SEM. GO sheets was observed using TEM, with an interplanar distance of 0.680 nm. Ni/Co nanoparticles, with an approximate size of 2 nm, were observed after deposition on GO. The material was used in the evolution of hydrogen from NaBH4, obtaining an efficiency close to 90%, with a kinetic constant of 0.0230 s-1 at 296.15 K and activation energy of 46.7 kJ mol-1. The material showed an efficiency in seven reuse cycles. Therefore, a route of a new material with added value from electronic waste was obtained from an eco-friendly process, which can be used in NaBH4 hydrolysis. |
Author Keywords |
e-waste; metallic nanoparticles; catalysis; eco-friendly process; sustainability |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:001114223400001 |
WoS Category |
Engineering, Chemical |
Research Area |
Engineering |
PDF |
https://www.mdpi.com/2227-9717/11/11/3250/pdf?version=1700446282
|