Title |
Plastic waste as a valuable resource: strategy to remove heavy metals from wastewater in bench scale application |
ID_Doc |
14021 |
Authors |
Nguyen, QH; Tran, ATK; Hoang, NTT; Tran, YTH; Nguyen, PX; Pham, TT; Nguyen, MK; Van der Bruggen, B |
Title |
Plastic waste as a valuable resource: strategy to remove heavy metals from wastewater in bench scale application |
Year |
2022 |
Published |
Environmental Science And Pollution Research, 29, 28 |
DOI |
10.1007/s11356-022-19013-4 |
Abstract |
Single-use plastic waste is gradually considered a potential material for circular economy. Ion exchange resin obtained from polystyrene waste by sulfonating with H2SO4 was used for heavy metal removal from electroplating wastewater. Batch mode experiments of Cu2+, Zn2+, and Cd2+ were carried out to determine effect of pH, initial concentration, equilibrium time, and the isotherm and kinetic parameters; the stability of the resin in continuous operation was then evaluated. Finally, the longevity of the resin after being exhausted was explored. The results indicated that at pH 6, a pseudo-second-order kinetic model was applicable to describe adsorption of studied heavy metals by sulfonated polystyrene with adsorption capacities of 7.48 mg Cu2+/g, 7.23 mg Zn2+/g, and 6.50 mg Cd2+/g, respectively. Moreover, the ion exchange process between sulfonated polystyrene resin and Cu2+, Zn2+, Cd2+ ions followed the Langmuir isotherm adsorption model with R-2 higher than 96%. The continuous fixed-bed column in conditions of a sulfonated polystyrene mass of 500 g, and a flow rate of 2.2 L/h was investigated for an influent solution with known initial concentration of 20 mg/L. Thomas and Yoon-Nelson models were tested with regression analysis. When being exhausted, the sulfonated polystyrene was regenerated by NaCl in 10 min with ratio 5 mL of NaCl 2 M per 1 g saturated resins. After 4 times regeneration, the heavy metal removal efficiency of sulfonated polystyrene was reduced to 50%. These aforementioned results can figure out that by sulfonating polystyrene waste to synthesize ion exchanging materials, this method is technically efficient and environmentally friendly to achieve sustainability. |
Author Keywords |
Sulfonated polystyrene; Ion exchange resin; Electroplating wastewater; Waste recovery |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:000752216000007 |
WoS Category |
Environmental Sciences |
Research Area |
Environmental Sciences & Ecology |
PDF |
|