Knowledge Agora



Scientific Article details

Title Impact of Bioplastic Design on Biodigestion Treatment
ID_Doc 16649
Authors Oliver, I; Martínez-Pérez, N; Fullana, A; Conesa, JA
Title Impact of Bioplastic Design on Biodigestion Treatment
Year 2024
Published Sustainability, 16, 16
DOI 10.3390/su16167167
Abstract In this study, the impact of bioplastic design on anaerobic digestion for biogas production was investigated. This research aims to facilitate the integration of bioplastics into a circular economy, which is why our study proposes considering not only aspects related to their degradation in the formulation but also ensuring efficient behavior in anaerobic digestion plants. Thermoplastic starch (TPS) samples, derived from different starch sources and formulated with varying concentrations of calcium carbonate and thicknesses, were subjected to anaerobic digestion tests. Three key parameters were explored: the influence of filler concentration, the effect of sample thickness, and the role of starch origin. Biogas production and kinetics were assessed using biochemical methane potential (BMP) tests. The results reveal that calcium carbonate concentration negatively influenced the methane production rate, reaching 30 NmL/gVS/day for the filler-free sample, highlighting the importance of understanding filler effects on anaerobic digestion. Additionally, thicker samples exhibited slower biogas production, with a rate of 25 NmL/gVS/day compared to 30 NmL/gVS/day for the thinnest sample, emphasizing the relevance of sample thickness in influencing digestion kinetics. The starch origin did not yield significant differences in biogas production, providing valuable insights into the feasibility of using diverse starch sources in bioplastic formulations. This study enhances our understanding of bioplastic behavior during anaerobic digestion, offering essential insights for optimizing waste management strategies and advancing circular economy practices.
Author Keywords bioplastic; anaerobic digestion; circular economy; thermoplastic starch; waste management
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
EID WOS:001304972800001
WoS Category Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies
Research Area Science & Technology - Other Topics; Environmental Sciences & Ecology
PDF https://doi.org/10.3390/su16167167
Similar atricles
Scroll