Knowledge Agora



Scientific Article details

Title Artificial Intelligence Assisted Dynamic Control of Environmental Emissions From Hybrid Energy Process Plants (HEPP)
ID_Doc 17813
Authors Tuzun, U
Title Artificial Intelligence Assisted Dynamic Control of Environmental Emissions From Hybrid Energy Process Plants (HEPP)
Year 2020
Published
DOI 10.3389/fenrg.2020.00179
Abstract A model digital data processing platform is proposed based on "deep-learning" methodology that can be used to identify the emissions patterns from process plants with hybrid energy recovery and energy generation facilities. The non-invasive dynamic monitoring and correlation of particulate, VOCs and other greenhouse gas emissions from semi-batch and continuous process plants is demonstrated with use of neural encoding and pattern recognition using a multi-layer perceptron and multi-stack encoder configuration. A multi-layer environmental perceptron (MLEP) is developed based on the above analyses that aims to detect patterns of emission types, rates and concentrations as a function of variation of plant operational conditions and process variables. Four different task algorithms are constructed and are currently trained for use in (i) In-Plant Product Quality Control Domain and (ii) In-Plant Process Efficiency Target Control Domain. As a further consequence, environmental impact assessment is considered within the hazards and process safety frameworks that conventionally issue sanctions and penalize non-compliance with imposition of environmental levy scales rather than offering process improvement incentives. The latter is demonstrated to be possible by facilitating dynamic corrective action and hazard prevention using MLEP platforms should emission ceilings be frequently and/or periodically exceeded in 24/7 continuous plant operations. Potential applications of the MLEP (MLEP) are illustrated in the context of dynamic emissions control and abatement in hybrid energy process plants (HEPP) and combined power plants using process-integrated CO2 capture and storage schemes.
Author Keywords digital platforms; network analysis; environmental sensors; emissions control; HEPP
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000561591300001
WoS Category Energy & Fuels
Research Area Energy & Fuels
PDF https://www.frontiersin.org/articles/10.3389/fenrg.2020.00179/pdf
Similar atricles
Scroll