Knowledge Agora



Scientific Article details

Title Defect-Engineering by Solvent Mediated Mild Oxidation as a Tool to Induce Exchange Bias in Metal Doped Ferrites
ID_Doc 19911
Authors Muzzi, B; Albino, M; Petrecca, M; Innocenti, C; Fernández, CD; Bertoni, G; Ibarra, MR; Christensen, M; Avdeev, M; Marquina, C; Sangregorio, C
Title Defect-Engineering by Solvent Mediated Mild Oxidation as a Tool to Induce Exchange Bias in Metal Doped Ferrites
Year 2023
Published Small Methods, 7.0, 11
DOI 10.1002/smtd.202300647
Abstract The crystal site occupancy of different divalent ions and the induction of lattice defects represent an additional tool for modifying the intrinsic magnetic properties of spinel ferrites nanoparticles. Here, the relevance of the lattice defects is demonstrated in the appearance of exchange-bias and in the improvement of the magnetic properties of doped ferrites of 20 nm, obtained from the mild oxidation of core@shell (wustite@ferrite) nanoparticles. Three types of nanoparticles (Fe0(.95)O@Fe3O4, Co0.3Fe0.7O@Co0.8Fe2.2O4 and Ni0.17Co0.21Fe0.62O@Ni0.4Co0.3Fe2.3O4) are oxidized. As a result, the core@shell morphology is removed and transformed in a spinel-like nanoparticle, through a topotactic transformation. This study shows that most of the induced defects in these nanoparticles and their magnetic properties are driven by the inability of the Co-(II) ions at the octahedral sites to migrate to tetrahedral sites, at the chosen mild oxidation temperature. In addition, the appearance of crystal defects and antiphase boundaries improves the magnetic properties of the starting compounds and leads to the appearance of exchange bias at room temperature. These results highlight the validity of the proposed method to impose novel magnetic characteristics in the technologically relevant class of nanomaterials such as spinel ferrites, expanding their potential exploitation in several application fields.
Author Keywords controlled oxidation; defect engineering; exchange bias; magnetic nanoparticles; spinel ferrite
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:001191499300004
WoS Category Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
Research Area Chemistry; Science & Technology - Other Topics; Materials Science
PDF https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smtd.202300647
Similar atricles
Scroll