Knowledge Agora



Scientific Article details

Title Evaluation of lauric acid enhancement of black soldier fly larvae from coconut
ID_Doc 22857
Authors Gatlin, DM; De Carvalho, PLPF; Flint, C; Miranda, C; Tomberlin, JK
Title Evaluation of lauric acid enhancement of black soldier fly larvae from coconut
Year 2024
Published
DOI 10.1093/jee/toae093
Abstract The current study evaluated the potential enhancement of lauric acid (LA) in black soldier fly, Hermetia illucens, (L.) (Diptera: Stratiomyidae) larvae (BSFL), a source of this short-chain fatty acid which has antimicrobial and immunostimulatory properties. Replicate groups of BSFL were reared on either the coconut or Gainesville diet for 7 days. After the rearing period, BSFL were harvested, purged, dried, and subjected to proximate, fatty acid and amino acid compositions, and pepsin digestibility analyses. Results demonstrate changes in proximate composition. BSFL reared on the coconut had significantly (P = 0.002) higher lipid content (47.3% vs. 25.2%) on a dry-matter basis. The LA concentration in BSFL produced on the coconut was 31% greater than those reared on Gainesville, resulting in almost 150% more LA. Furthermore, BSFL-fed coconut had reduced crude protein (29.7% of dry weight) and ash (3.7% of dry weight) relative to those fed Gainesville (43.4% and 7.5% for crude protein and ash, respectively) but higher pepsin digestibility (91.0% vs. 87.0%). The relative amounts of various amino acids in the 2 BSFL meals did not differ extensively, with statistically lower concentrations of only phenylalanine and tryptophan and higher concentrations of alanine, arginine, isoleucine, leucine, and serine in BSFL reared on coconut. Results demonstrate that the nutritional composition of BSFL can be manipulated, and an enhancement of LA concentrations of 150% was achieved with coconut, which has value for BSFL as a feed for various livestock, including aquaculture. Lower protein content is a tradeoff in terms of BSFL value as a feed additive.
Author Keywords bioeconomy; circular economy; sustainability
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:001215640200001
WoS Category Entomology
Research Area Entomology
PDF
Similar atricles
Scroll