Knowledge Agora



Scientific Article details

Title Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization
ID_Doc 23984
Authors Miguel-Fernández, R; Amundarain, I; Asueta, A; García-Fernández, S; Arnaiz, S; Miazza, NL; Montón, E; Rodríguez-García, B; Bianca-Benchea, E
Title Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization
Year 2022
Published Polymers, 14, 14
DOI 10.3390/polym14142936
Abstract Polyurethane (PU) is one of the most versatile polymers available and can be found in an infinite number of formats ranging from rigid or flexible foams to elastomers. Currently, most Rigid PU Foam (RPUF) waste is landfilled, even though a small amount is mechanically recycled, in which the material is conditioned in size to a very fine powder, which is introduced as a filler. In this work, chemical recycling of two types of rigid PU foams is studied, the major difference being the aliphatic or aromatic nature of the isocyanate used in the synthesis. A solvolysis process is developed, a chemical depolymerization that breaks the chains by means of a chemical agent, a solvent, in the presence of a catalyst and under controlled process conditions. The glycolysis products are purified by vacuum distillation, centrifugation, and acid water treatment, depending on the most suitable process for each waste type. Optimal process conditions are established to obtain high-purity green polyols by performing a set of catalytic glycolysis reactions at laboratory scale with the previously conditioned RPUF waste samples. The physicochemical properties of the polyols, such as hydroxyl value, acid value, average molecular weight (M-n), and viscosity, are analyzed. The chemical structure and thermal stability of the polyols are studied by means of FTIR and TGA, respectively. Partial substitution of the commercial polyol (up to 15 wt.%) by the recycled polyols for RPUF synthesis is studied and characterized.
Author Keywords glycolysis; polyurethane; foams; chemical recycling; circular economy; polyols
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED)
EID WOS:000832124700001
WoS Category Polymer Science
Research Area Polymer Science
PDF https://www.mdpi.com/2073-4360/14/14/2936/pdf?version=1658458073
Similar atricles
Scroll