Knowledge Agora



Scientific Article details

Title Microplastics in Aquatic and Food Ecosystems: Remediation Coupled with Circular Economy Solutions to Create Resource from Waste
ID_Doc 2471
Authors Dhiman, S; Sharma, C; Kumar, A; Pathak, P; Purohit, SD
Title Microplastics in Aquatic and Food Ecosystems: Remediation Coupled with Circular Economy Solutions to Create Resource from Waste
Year 2023
Published Sustainability, 15, 19
DOI 10.3390/su151914184
Abstract Microplastics (MPs) less than 5 mm in dimension are progressively becoming persistent in aquatic and food ecosystems and are a global concern. Microbeads (less than 1 mm) used in household cleaners, cosmetics, and apparel washing are the primary source, followed by secondary sources including broken-down plastic litter and waste. They are ingested by a range of aquatic animals, including zooplankton, crustaceans, and fish, and can enter human food chains in a variety of manners. Thus, microplastic pollution poses a detrimental effect on the overall ecological balance, including the aquatic ecosystem, food safety, and human health. Strategies such as microbial enzymes/biofilms and nanotechnology-based solutions to MPs biodegradation, the usage of substitute materials such as biodegradable plastics, and source reduction could be employed to mitigate microplastic pollution. In addition, the implementation of plastic waste into the circular economy, for example by applying the reduce, recycle, and reuse approach, could potentially serve as a sustainable solution to abate the adverse effects of plastics. Thus, plastic waste could contribute to a sustainable circular and climate-neutral economy as a result of its durability and recyclability. This review presents a comprehensive report on microplastic management and transformation strategies, reflecting bioremediation coupled with circular economy-based solutions to microplastic pollution. It also highlights future recommendations to stakeholders and for governmental policies for the reduction of plastic pollution by potentially utilizing plastic waste in a circular economy to generate wealth from waste. Overall, this article provides an exhaustive and essential overview of microplastic treatment procedures and their role in the circular economy, where plastic waste generated by aquatic and food-based ecosystems might possibly be managed and re-utilized.
Author Keywords microplastics; remediation strategies; biofilms; nano-bioremediation; plastic waste management; circular economy solutions
Index Keywords Index Keywords
Document Type Other
Open Access Open Access
Source Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
EID WOS:001083365700001
WoS Category Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies
Research Area Science & Technology - Other Topics; Environmental Sciences & Ecology
PDF
Similar atricles
Scroll