Title |
Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y) |
ID_Doc |
25365 |
Authors |
Gouvinhas, I; Garcia, J; Granato, D; Barros, A |
Title |
Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y) |
Year |
2022 |
Published |
Molecules, 27, 16 |
DOI |
10.3390/molecules27165057 |
Abstract |
This work evaluated the phytochemical composition of olive seed extracts from different cultivars ('Cobrancosa', 'Galega', and 'Picual') and their antioxidant capacity. In addition, it also appraised their potential antineurodegenerative properties on the basis of their ability to inhibit enzymes associated with neurodegenerative diseases: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYR). To achieve this goal, the phenolic composition of the extracts was determined through high-performance liquid chromatography coupled with photodiode-array detection and electrospray ionization/ion trap mass spectrometry (HPLC-DAD-ESI/MSn). The antioxidant capacity was assessed by two different methods (ABTS(center dot+) and DPPH center dot), and the antineurodegenerative potential by the capacity of these extracts to inhibit the aforementioned related enzymes. The results showed that seed extracts presented a high content of phenolic compounds and a remarkable ability to scavenge ABTS(center dot+) and DPPH center dot. Tyrosol, rutin, luteolin-7-glucoside, nuzhenide, oleuropein, and ligstroside were the main phenolic compounds identified in the extracts. 'Galega' was the most promising cultivar due to its high concentration of phenolic compounds, high antioxidant capacity, and remarkable inhibition of AChE, BChE, and TYR. It can be concluded that olive seed extracts may provide a sustainable source of bioactive compounds for medical and industrial applications. |
Author Keywords |
circular economy; agro-industrial side streams; phenolic compounds; antioxidant agents |
Index Keywords |
Index Keywords |
Document Type |
Other |
Open Access |
Open Access |
Source |
Science Citation Index Expanded (SCI-EXPANDED) |
EID |
WOS:000845311900001 |
WoS Category |
Biochemistry & Molecular Biology; Chemistry, Multidisciplinary |
Research Area |
Biochemistry & Molecular Biology; Chemistry |
PDF |
https://www.mdpi.com/1420-3049/27/16/5057/pdf?version=1660040080
|